Preface

Just a few months ago, I came across a novel circuit for my telephone while just glancing at a small electronics periodical. In a hurry, I put down the magazine and left the circuit for someone else’s amazement. I haven’t seen the circuit since that day, although the Lord knows I’ve tried to find a copy of that magazine and the precious circuit it contains. In this day of the ever present photocopier, I can only blame myself for temporarily—I hope—losing that circuit.

Years ago, as a teen-ager, I must have been luckier or somewhat wiser than I am now, at least in preserving electronic circuits; I bumped into one at a newsstand, bought the magazine, and soldered together all the parts I had found in New York’s Radio Row. Until I outgrew it in about a year, that circuit performed well as my first ham transmitter. Electronic circuits have been one of my loves ever since.

And you might have the same vice I have. If so, like many of us who have electronics as our avocation or occupation (or both), you’ve misplaced a few useful circuit schematics in your time. That’s where The GIANT Handbook of Electronic Circuits comes in. This collection of circuits from many sources is sort of a “lost and found” of circuits, those you just cannot place your finger on any longer. On the other hand, it’s just as likely that you’ll spot an entirely new circuit when turning to any of the following 60 chapters. And just as important, this handbook serves as a valuable reference for large-circuit design and verification.

Raymond A. Collins
Senior Electronics Editor
TAB BOOKS Inc.
Acknowledgments

Many thanks to the following manufacturers of semiconductors for furnishing a large percentage of the circuits you'll find in this handbook.

Analog Devices Inc.
Route 1—Industrial Park
Box 280
Norwood, MA 02062

Burr-Brown Research Corp.
6730 S. Tucson Boulevard
Tucson, AZ 85734

Datel Systems Inc.
1020 Turnpike Street
Canton, MA 02021

General Electric
W. Genessee Street
Auburn, NY 13021

GTE Sylvania Inc.
Emporium, PA 15834

Intersil Inc.
10900 N. Tantau Ave.
Cupertino, CA 95014
Motorola Semiconductor Products Inc.
Box 20912
Phoenix, AZ 85008

National Semiconductor
2900 Semiconductor Drive
Santa Clara, CA 95051

Precision Monolithics Inc.
1500 Space Park Drive
Santa Clara, CA 95050

RCA Corp.
Route 202
Somerville, NJ 08876

Signetics Corp.
811 E. Arques Avenue
Sunnyvale, Ca 94086

Workman Electronic Products
P.O. Box 3828
Sarasota, FL 33578

Credit within the captions uses the following key:
AD—Analog Devices Inc.
BB—Burr-Brown Research Corp.
DS—Datel Systems Inc.
GE—General Electric
GTE—GTE Sylvania Inc.
I—Intersil Inc.
M—Motorola Semiconductor Products Inc.
NS—National Semiconductor
PM—Precision Monolithics Inc.
RCA—RCA Corp.
S—Signetics Corp.
W—Workman Electronic Products
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A/D-D/A</td>
<td>9</td>
</tr>
<tr>
<td>2 Alarms, Sensors and Triggering Circuits</td>
<td>14</td>
</tr>
<tr>
<td>3 AM and FM Broadcast Receivers</td>
<td>22</td>
</tr>
<tr>
<td>4 Amateur Radio Accessories</td>
<td>26</td>
</tr>
<tr>
<td>5 Amateur Radio Receivers and Converters</td>
<td>33</td>
</tr>
<tr>
<td>6 Amplifiers and Preamplifiers</td>
<td>78</td>
</tr>
<tr>
<td>7 Audio Amplifiers and Preamplifiers</td>
<td>104</td>
</tr>
<tr>
<td>8 Audio Conditioning Circuits</td>
<td>125</td>
</tr>
<tr>
<td>9 Automotive Circuits</td>
<td>147</td>
</tr>
<tr>
<td>10 Battery Chargers</td>
<td>157</td>
</tr>
<tr>
<td>11 Biomedical Circuits</td>
<td>161</td>
</tr>
<tr>
<td>12 Bridge Circuits</td>
<td>168</td>
</tr>
<tr>
<td>13 Chopper Circuits</td>
<td>173</td>
</tr>
<tr>
<td>14 Computer-Related Circuits</td>
<td>178</td>
</tr>
<tr>
<td>15 Control and Tone Circuits, CORs and Repeater Circuits</td>
<td>199</td>
</tr>
<tr>
<td>16 Converters</td>
<td>224</td>
</tr>
<tr>
<td>17 CW Circuits</td>
<td>235</td>
</tr>
<tr>
<td>18 Data Transfer Circuits</td>
<td>238</td>
</tr>
</tbody>
</table>
19 Demodulators 251
20 Detectors 253
21 Diode Circuits 263
22 Filters 316
23 Frequency Multipliers 325
24 Gadgets 331
25 Games and Toys 349
26 Indicator Circuits 357
27 Integrators 361
28 Interface Circuits 363
29 Inverters 367
30 Logarithmic Amplifiers 370
31 Logic Circuits, Counters and Clocks 373
32 Math Function Circuits 418
33 Miscellaneous Circuits 437
34 Multiplexers 468
35 Multivibrators 472
36 Music-Related Circuits 476
37 Op Amp Circuits 482
38 Oscillators 507
39 Photo-Activated Circuits 521
40 Power Amplifiers 531
Chapter 1
A/D-D/A
Note. For $1\,\mu s$ conversion time with 8-bit resolution and 7-bit accuracy, an LM361 comparator replaces the LM319 and the reference current is doubled by reducing R_1, R_2 and R_3 to 2.5 kΩ and R_4 to 2 MΩ.

Fig. 1-1. A complete 2-μs conversion time, 8-bit A/D converter (NS).
Fig. 1-2. High-speed 12-bit A/D converter (NS).
Fig. 1-3. Successive approximation A/D converter (M).
Fig. 1-4. A/D converter with a microprocessor (NS).

Fig. 1-5. Basic A/D converter using a voltage-to-frequency converter (NS).
Chapter 2
Alarms, Sensors and Triggering Circuits
1 mA ≤ I_{OUT} ≤ 5 mA
† † Center scale trim
† Scale factor trim
* Copper wire wound

Fig. 2-1. Logarithmic light sensor (NS).

Fig. 2-2. Light level sensor (NS).
Fig. 2-3. Highly efficient tamper-proof burglar alarm.

Parts list:
- SCR1—HEP R1220
- D1—HEP R0050
- C1—0.01μF nonpolarized
- R1—4.7MΩ, 1/2W
- R2—1kΩ, 1/2W
- R3—1kΩ

- S1, S2, S3—SPST switches, Lafayette 34P02302
- S4, S5, S6, S7—Push-button switches Lafayette 34P0
- AL1—Siren alarm, Lafayette 14P37508
- T1, T2—HEP S0019

Lafayette Switches: 34P02302, 34P0, 14P37508
Fig. 2-4. Make-to-operate burglar alarm.

Parts list
SCR1—HEP R1220
D1—HEP R0050
R1, R2—1kΩ, 1/2W
R3—470Ω, 1/2W
S1, S2, S3, S4—Push-button, Lafayette 34P02047
AL1—Siren alarm, Lafayette 14P37508

Fig. 2-5. Remote alarm circuit.

Parts list
SCR1—HEP R1220
D1—HEP R0050
R1, R2—1kΩ, 1/2W
S1, S2, S3—Push-button switches
Lafayette stock 34P02047
AL1—Siren alarm, Lafayette 14P37508
Fig. 2-6. Tamper-proof burglar alarm.

Parts list:
SCR1—HEP R1220
D1—HEP R0050
C1—1\(\mu\)F electrolytic
R1—12k\(\Omega\), 1/2W
R2, R3—1k\(\Omega\), 1/2W
R4—470\(\Omega\), 1/2W
S1, S2, S3—SPST switch, Lafayette 34P02302
S4, S5, S6, S7—Push-button switch Lafayette 34P02047
AL1—Siren alarm, Lafayette 14P37508
Fig. 2-7. Electronic temperature sensor (NS).
Fig. 2-8. Isolated voltage sensor (NS).

Fig. 2-9. Remote temperature sensing (NS).
Fig. 2-10. Temperature sensor (PM).
Chapter 3
AM and FM Broadcast Receivers
Fig. 3-1. Automatic frequency control for an FM receiver.

Fig. 3-2. Stereo volume control (NS).
FIGURE 8. AM Radio Power Amplifier

Note 1: Twist supply lead and supply ground very tightly.
Note 2: Twist speaker lead and ground very tightly.
Note 3: Ferrite bead is Ferroxcube K5-001-001/38 with 3 turns of wire.

Note 4: R1C1 band limits input signals.
Note 5: All components must be spaced very close to IC.

Fig. 3-3. AM radio power amplifier (NS).
Fig. 3-4. A 3-band active tone control (NS).
Chapter 4
Amateur Radio Accessories
Fig. 4-1. Voice-activated switch and amplifier (NS).
Fig. 4-2. Squelch circuit for FM scanners and handle talkies (NS).

Fig. 4-3. JFET speech amplifiers.
Component Values (Typical)

- R_1: 6.8 to 16K ohm
- R_2: 4.7K ohm
- R_3: 20K ohm
- C_1: 0.10 mfd
- C_2: 1.0 mfd 6V
- C_3: 2.2 mfd 6V
- C_4: 250 6V

Fig. 4-4. Touch-Tone® decoder (S).
Fig. 4-5. A simple, 4-channel scanner circuit which can be added to a crystal-controlled FM transceiver. The unit sequentially turns on transistors, which then complete the crystal-to-ground connections of the FM rig.
Fig. 4-6. Op amp speech amplifier.

Fig. 4-7. Op-amp speech amplifier.

VALUE DEPENDS UPON IMPEDANCE OF T1

1MEG MICROPHONE GAIN
Fig. 4-8. Active-low-pass filter for 3-kHz bandwidth.
Chapter 5
Amateur Radio
 Receivers and Converters
Fig. 5-1. Simple radio receiver uses an audio amplifier at the output of crystal set.

Fig. 5-2. Circuit for a simple crystal set receiver.
Fig. 5-3. More advanced crystal set receiver.

Fig. 5-4. This 30 MHz i-f stage uses two FETs connected in the cascode arrangement to provide 20 dB gain without neutralization; the bandwidth is 4 MHz. Both FETs in this circuit are 2N3819, MPF105 or TIS34. With a negative supply voltage, the 2N4360 would be suitable.
Fig. 5-5. Overall converter schematic. L1, 17 turns, 15 mm OD, 25 mm long; L2, 3 turns on cold end of L1; L3, 1 turn on cold end of L1; L4, 11 turns, 8 mm OD, 35 mm long; L5, 2 turns on cold end of L4; L6, 21 turns No. 30 inside cup core from Millen 10C; L7, 4 turns No. 30 wound over L6; L8, 5 turns, 15 mm OD, 8 mm long mixer tap at 1 turn, and emitter tap at 2 turns from ground.
Fig. 5-6. This rf preamplifier is easily adapted to any range under 30 MHz simply by choosing appropriate input and output tuned circuits.

Fig. 5-7. This simple one-transistor superregenerative receiver for two meters may be used for copying many local signals. With the components shown this receiver will tune from about 90 to 150 MHz. It may be used on other frequencies by changing the inductor and capacitor Q1 is a GE-9 or HEP 2.
Fig. 5-8. Circuit diagram of the SWL receiver incorporating the TAD-100 IC chip.
This high-impedance preamplifier provides up to 20 megohms input impedance and has a frequency response from 10 Hz to 220 kHz. Circuit B was developed from circuit A by replacing the emitter resistor in A with Q3 and adding an emitter follower to reduce loading. The input impedance is further increased by the components shown by the dashed line. All transistors are 2N2188, SK3005, GE-9, or HEP 2.
Fig. 5-10. Regenerative receiver for 3.5 MHz optimizes LC ratio for better tuning and controllability. $Q_1 = \text{2N370}$, $Q_2 = \text{OC70}$ or 71.

Fig. 5-11. This unit offers 12-15 dB gain on 10m, and about 20 dB or more from 15m and down. All leads should be as short as possible. Building it on a PC board should give good results. Q_1 can be any type of transistor. The beta should be around 150+. ft should be 60 MHz or better.
RCA FET TYPE 3N128

Fig. 5-12. Rf preamplifier for 40 meters (7 MHz) employs FET and yields more than 10 dB gain.

Fig. 5-13. Preamp. C, C9—275—970 pF Elmenco paddler 306; C2, C3—0.0033 μF Mylar (2200 pF for 6 ft loop); C4, C5, C6—1000 pF dippiled silver/mica; C6, C10—0.1 μF Centralab CK-104; C7—820 pF dippiled silver/mica; L1—3 mH CT. Wound with No. 26 magnet wire approximately 85 turns on an Indiana General Corp. cup core TC7-04-400. Link is 3 turns of insulated wire; RFC1—10 mH Ferrite core rf choke; TR1, TR2—Motorola HEP 802 transistors or RCA 3N128.
Fig. 5-14. Dual-gate FET preamplifier for 150 MHz range ups received signal strength by 20 dB.

Fig. 5-15. Phase-locked loop allows this AM broadcast-band receiver to be tuned with a 5K pot. Can be adapted to any frequency from 1 to 15 MHz by changing values of C_Y and C_1; $C_Y = (f_{hi} - f_{lo})/(f_{hi} \times f_{lo})$; $C_1 = 300 \text{ pF}/f(\text{MHz})$.

43
Fig. 5-16. FM detector, with 10.7 MHz output, uses phase-locked loop. Part values are shown.

Fig. 5-17. Here is a circuit of a simple 2m converter that works in a pocket AM radio. Since it is crystal controlled, the receiver must tune to a frequency that equals the desired frequency minus 3×48.5. Substitute a different frequency crystal if a strong BC station happens to heterodyne with the desired 2m signal.
Fig. 5-18. Trf receiver for standard broadcast band uses LM372 integrated circuit.

L1 - Ferrite Loopstick - Philmore FF15 (packaged as set of 3 sizes)
C9 - Sub miniature variable capacitor - Philmore 1949G - 365 pF max.
T1 - Midget Audio Transformer, 1000Ω:8Ω - Archer 273-1380 (Radio Shack, Inc.)
SPKR - 2" PM Speaker, 8Ω, 0.1 watt - Philmore TS20
Fig. 5-19. Simple rf preamplifier for 6 meters, TV channel 2 or 3, or any frequency between 50 and 60 MHz. No tuning is required because of broad bandwidth (10 MHz); output impedance is about 50 ohms.

Fig. 5-20. Tunnel-diode converter changes AM broadcast radio to receiver capable of detecting 50 MHz signals.
Fig. 5-21. Two-meter preamplifier, MOSFET. C4-5 are button micas and support transistor leads forming resonant circuit. L1 is JFD LC374 tank circuit which contains C1. L2 is 6T 22-gage enamel on 5 mm slug-tuned form, tap at 1 turn. 3N159 will also work in circuit (RTTY Journal, P.O. Box 837, Royal Oak, MI 48068).

Fig. 5-22. You say you got a real bargain on an old motorcycle FM rig, only to find out it is 6 volt? Fret no more.
Fig. 5-23. This simple 2-transistor converter tuned in 150 MHz (ham, police, commercial) and requires no direct connection to broadcast-band receiver. Position next to radio receiver.

Fig. 5-24. Tunable shortwave converter, designed for receiving WWV on ordinary table radio, allows table radio to receive any signal between 10 and 15 MHz. 15 MHz position must be calibrated with C6 to tune oscillator and C3 to peak rf amplifier; then switch S1 to 10 MHz and tune C4 and C2.
Fig. 5-25. Two-meter preamplifier. Very few receivers will not be improved with a preamplifier such as this. The coils are wound on Miller 60A022-4 forms, or any other small brass slug ceramic forms APC board is recommended.

Fig. 5-26. Low-frequency preamp 1 Hz to 50 kHz, voltage gain 400, extremely low noise, all capacitances in \(\mu \)F, all resistors \(\frac{1}{2} \)W, transistors 2N5486.
AF AMPLIFIER
AMPEREX
TAA-300

50

Coil Table, Fig. 2. (All taps counted from ground (cold) end.)

L1 7 turns, airwound, 8/perm in. 5/8 O.D., antenna tap at 3 turns, 590 tap at 4 turns.
L2 6 turns, airwound, 4 per in., mixer tap at 2 turns.
L3 5 turns, airwound 8 per in., tap at 1 turn.
L4 35 turns (No. 30), in Miller cup core (from No. 10c I.F.T.).

L5 5 turns, No. 32, wound over L7.
L7 35 turns, No. 34, in Miller cup core.
L6 3 turns No. 30, wound on L7.
L8 35 turns No. 34, wound in Miller cup core.
L9 3 turns wound over L8.
L10 4 turns wound on L11.
L11, 64 turns, air wound, 32 per in., 5/8 O.D.
Fig. 5-27. Single-conversion superhet receiver for 50 MHz uses three HEP 590 Motorola integrated circuits. Unit trades selectivity for extreme sensitivity.
Fig. 5-28. VHF TV tuner using the FT0601 dual-gate MOSFET in RF amplifier and mixer stages.
Fig. 5-29. Cascade preamp circuit, using two grounded-gate FETS, provides plenty of rf gain on 6 or 2 meters. Frequency-sensitive values are listed at the upper left portion of the diagram.
Fig. 5-30. Six-meter preamp with 30 dB of signal gain and 600 kHz bandwidth. The input and output impedances are matched. AGC may be added to pin 5. For FM use, dip the coils to 52.5 MHz.
Fig. 5-31. Simple converter allows 170 MHz receiver to be used for reception of 220 MHz signals.

Fig. 5-32. Receiver converter for 50 MHz uses integrated circuit. Output frequency is approximately 1 MHz (center of AM broadcast band).
Fig. 5-33. Complete schematic of a good working regenerative detector. Transistor T1 is the actual detector, which operates at very low power levels. T2 is an emitter follower, which copies out the signal with minimum loss.

Fig. 5-34. This simple one-transistor superregenerative receiver for 2 meters may be used for copying many local signals. With the components shown, this receiver will tune from about 90 to 150 MHz. It may be used on other frequencies by changing the inductor and capacitor. Q1 is 2N1742, 2N2398, 2N3399, GE-9, or HEP 2.
Fig. 5-36. 50 MHz converter using field effect transistor rf amplifier and mixer. The FETs cost about $1 each. This converter has excellent noise figure and great resistance to cross modulation.
Fig. 5-36. This high-impedance preamplifier provides up to 20 megohms input impedance and has a frequency response from 10 Hz to 200 kHz. Circuit B was developed from circuit A by replacing the emitter resistor in A with Q3 and adding an emitter follower to reduce loading. The input impedance is further increased by the components shown by the dashed line. All transistors are 2N2188, SK3005, GE-9, or HEP 2.
Fig. 5-37. Low-noise 2-meter preamplifier uses a beer can cavity to provide excellent discrimination against nearby kilowatts. Q1 is a 2N3478, 2N3563, 2N3564, 40235, or SK3019.

Fig. 5-38. Low-noise 220 MHz preamplifier. This circuit will provide extremely high gain with low noise on the 1¼ meter band. Neutralization is controlled by inductor L2.
Fig. 5-39. Schematic of low-cost, low-noise, low-cross-modulation 2-meter converter. Note that only the mixer uses an FET; the mixer is responsible for most cross modulation.
Fig. 5-40. This preamplifier provides 11 dB gain from 0.5 Hz to 2 MHz and has an input impedance of 32 megohms. Transistors Q1, Q2 and Q4 are 2N338, SK3020, or HEP 53; Q3 is a 2N328, GE-2, or HEP 52.

Fig. 5-41. RTTY converter circuit is taken from computer data set applications note; data set is same as AFSK converter, but gets input signal from telephone line and so is not subject to such high levels of interference as is RTTY. Input may be either at i-f or audio frequencies; table shows values of C1 for both cases. Output consists of pulses which may drive a keying circuit for selector magnets.
Fig. 5-42. A 28-MHz rf preamplifier uses HEP 590 integrated circuit (Motorola); interconnection to receiver is via coaxial cable.

DI-IN295, TAPPED ON AT 4 Turner
L1-8 TURNS, AIRWOUND, 10 PER INCH
L2-2 TURNS AROUND L1, VARIABLE COUPLING

Fig. 5-43. A diode detector makes a convenient and useful receiver for checking the performance of your postage-stamp transmitter while it's on the bench.
Fig. 5-44. A 2m FM preamp. L1 & L4, 2T No. 22 hookup on cold end of L3; L2 & L3, 3/4 T No. 16 spaced the dia. L2 & L3 must be wound opposite directions: C1, 10 pF; C2, 470 pF; C3, 10 pF; C4 R1, 220Ω 1/2 W; R2, 370Ω 1/2 W; R3, 22Ω 1/2 W; Q1, Motorola MPF-107 or HEP 802.

Fig. 5-45. The tiny oscillator circuit operates from a standard 9V battery. A small hunk of wire provides an antenna sufficient to insure healthy output for several feet. Placed close to a conventional all-wave receiver, the unit provides sufficient carrier injection for copying single sideband and CW.
Fig. 5-46. A 10-meter tuner circuit diagram. The Miller 9050 and 9054 should be used if at all possible. They are ideally suited to this project because they are easy to modify and fully magnetically and electrostatically shielded. They are available through most large catalogs or directly from J.W. Miller Co., P.O. Box 5825, Compton, CA 90224. For those who cannot get these coils, the 9050 varies from 1.5 to 3.9 \(\mu \)H and the 9054 ranges from 28.0 to 60 \(\mu \)H. Also, the triple ganged capacitor used is noncritical. Do some experimenting until you get something with a maximum capacity of about 11 pf per section.
Fig. 5-47. Rf preamplifier for 450 MHz. Insert shows transistor basing.

Fig. 5-48. Alternate RTTY circuit uses NE565 IC. Maximum frequency of 565 is 500 kHz. This circuit is designed to drive digital IC devices, and type 5710 voltage comparator is included to adjust output level to values suitable for digital ICs. Pot is for frequency adjustment.

Fig. 5-49. Regenerative receiver for WWV (and other signals in 3.5 MHz region).
Fig. 5-50. Low noise JFET preamplifier for 2 meters.
Fig. 5-51. This 150 MHz rf preamplifier uses Motorola FET for true 14 dB gain (after factoring out noise). Coils should be wound on ¼ in. ceramic forms with brass slugs. L1 is 5.5 turns 26-gage tapped 1.25 turns from cold end; L2 is 9.5 turns 34-gage; L3 is 5 turns 26-gage, L4 is 1.5 turns 26-gage wrapped around lower end of L3. Shield well.

Fig. 5-52. Usually the crystal filter circuit in a receiver (A) must be physically located so that phasing capacitor \((C_p) \) is accessible to the front panel. By using the varactor phased filter in B, the crystal may be located in any convenient location. Q1 and Q2 are 2N3478, 2N3564, 2N3707, 40236 or HEP 50; D1 is a 20 pF varactor such as the IN954.
Fig. 5-53. Circuit of the Q-multiplier as constructed for a 455 kHz i-f.

Fig. 5-54. Simple Novice receiver for 80 meters.
Fig. 5-55. Schematic diagram of superregenerative receiver for the $\frac{3}{4}$ meter band.

Fig. 5-56. Simple coaxial cavity and transistor preamp for 150 MHz. Emitter should be bypassed with 1000 pF disc.

Fig. 5-57. Schematic of diode receiver for 432 MHz.
Coil data

C1—two 2-inch lengths of insulated hookup wire twisted together.

L2—21 turns no. 24 enamel wire, tapped at 4 turns, on same type form as L1

L3—25 turns no. 30 enamel wire, close-wound on 1/4-inch diam. iron slug tuned form (Miller 20A000RBI usable).

Fig. 5-58. Receiver converter accepts 21-MHz signals and amplified them before converting them to about 3.75 MHz.
Fig. 5-59. 220 MHz converter built on a 2" x 5" copper-plated board. L1, L2, L3, and L5 are each 4 turns No. 18 wire ¼” in diameter. L1 is ½” long and the other three are ¾” long. L4 is 11 turns No. 24 enamelled on a ¼” form with a brass slug. The winding is ¼” long.
Fig. 5-60. Schematic of simple 440 MHz converter. L1—L4 are quarter-wave trough lines, 5 mm (1/4") diameter and 68 mm (2 11/16") long. L5 is 3 turns 18-gage 7 mm (5/16") in diameter. L6 is 7 turns 18-gage on a 5/16" form and L7 is 3 turns on it.
\(Y_1 = \text{Xtal 43.5 mhz for 6.5 ic.5 mhz if} \)

\[R = \frac{1}{4} \text{ watts} \]

\[C = 50 \text{ vdc} \]

\[C1-4 = 7-45 \text{ pf trimmers} \]

Fig. 5-61. Receiver converter for 50 MHz has overall gain of 55 dB; output is difference frequency between crystal and generating frequency.
Fig. 5-62. Schematic diagram of 50 MHz converter. All resistors are ½-watt carbon. All bypass capacitors are disc ceramic. Dipped silver/mica capacitors are preferred for capacitance values below 100 pF, but disc ceramics are acceptable unless otherwise specified. The 1 pF dipped silver/mica capacitors are made by Cornell-Dubilier. For best sensitivity, connect the TIS88 source directly to a ground lug as at A. For better overload control, connect the 1N191 (or 1N191) diodes across J1 as at CX, and then connect the TIS88 source to the 330Ω(0.005 μF) bias network as at B.
Fig. 5-63. A 2-meter hot-carrier-diode converter.

L1, L2: PRI 10 turns No. 26 on Micrometals; sec 4 turns No. 26 on cold end.
L3, L4: 12 turns No. 34 Tri-filar on Indiana General CF-120-Q1.
L5: 7 turns No. 26 on Micrometals
L6, L7: 24 turns No. 28 on Micrometals; L7 has a secondary winding of 3 turns.
L8: 24 turns No. 28 on Micrometals; primary 7 turns No. 28 on cold end.
D1, D2, D3, D4: Hewlett Packard HPA-5082-2805 diodes.
Q1: RCA 40602
Q2: RCA 2N5187

PARTS LIST

C1, C3, C4, C8, C10, C11: 1.7-14.1 pF; EF JOHNSON 189-505-S; 60¢ each.
C2, C9: 1.5 pF NPO Ceramic
C5: 2.2 pF NPO Ceramic
C6: 3 pF Silver Mica
C7: 15 pF Silver Mica
C12, C13, C14, C15: 1000 pF Disc Ceramic
R1: 2.2K 1/8W
R2: 50K Potentiometer
R3: 47K 1/8W
R4: 100K 1/8W
R5: 2.7K 1/8W
R6: 10K 1/8W
R7: 1K 1/8W
Fig. 5-64. Schematic of the 2m converter. L1, L2, and L3—L5 turns No. 18, 0.7 cm diameter airwound, about 2 cm long, tap at one turn, adjust to resonate at 144 MHz. L4—3 turns hookup wires on L5. L5—L3 turns No. 20, 0.7 cm diameter slug tuned, 1.3 cm long, resonate at 144 MHz. L7—6 turns hookup wire on L6. L8—10 turns No. 24, 0.7 cm diameter slug tuned, resonate at 43 MHz. L9—4 turns No. 24, 0.7 cm diameter slug tuned, resonate at 130 MHz.
Fig. 5-65. Schematic diagram of 2m converter. Any one of the MOSFET types 3N140, 3N159, or MFE3007 may be substituted for any of the MOSFETs in the schematic. However, a 3N159 will give the lowest noise figure in the first stage. A 40673 should give the best protection against any rf spikes in the second stage. And a MFE3006/MFE3007 should give the best protection against steady, high-voltage rf signals in the mixer stage. All resistors are 1/2-watt carbon, 5%. All fixed capacitors other than SM, BM, or feedthrough types are disc ceramic.
Chapter 6
Amplifiers and Preamplifiers
R8 – R10 and D2 provide a temperature independent gain control
G = −336 V1 (dB)

Distortion < 0.1%
Bandwidth > 1 MHz
100 dB gain range

Fig. 6-1. Voltage-controlled variable gain amplifier (NS).

Common-mode range = ±10V
I_BIAS < 25 nA
I_DS < 0.5 nA
V_DS (untrimmed) < 125μV
(ΔV_DS/ΔT) < 0.2μV/°C
CMRR > 120 dB
A_VOL > 2,500,000

*C = 200 pF for unity gain
C = 30 pF for AV = 10
C = 5 pF for AV = 100
C = 0 for AV ≥ 1000

Fig. 6-2. Precision low-drift operational amplifier (NS).
Fig. 6-3. Bridge amplifier (NS).
Fig. 6-4. Power amplifier with A_v of approximately 100 (NS).

Fig. 6-5. Amplifier with bass boost (NS).
Fig. 6-6. Amplifier with a gain of 200 and minimum C_a (NS).

Fig. 6-7. Remote amplifier (NS).
Fig. 6-8. Remote thermocouple amplifier (NS).

Fig. 6-9. Ultra-low distortion amplifier with A_v of 10, THD less than 0.05 percent and V_{out} of 3 volts rms (NS).
Fig. 6-10. High-speed inverting amplifier with low drift (NS).

Fig. 6-11. Medium-speed, general-purpose amplifier (NS).
Fig. 6-12. Thermocouple amplifier with cold junction compensation.

Fig. 6-13. Unity gain amplifier (NS).
Fig. 6-14. A 10X buffer amplifier (NS).

Fig. 6-15. A 100X buffer amplifier (NS).
Fig. 6-16. Fast summing amplifier (NS).

Fig. 6-17. Differential amplifier (NS).
Fig. 6-18. Video DC restoring amplifier (NS).

Fig. 6-19. An AC-coupled noninverting amplifier (NS).
Fig. 6-20. High input impedance, DC differential amplifier (NS).

Fig. 6-21. Photovoltaic cell amplifier (NS).
Fig. 6-22. Voltage-controlled amplifier (NS).

Fig. 6-23. Amplifier with gain of 50 (NS).
Fig. 6-24. Amplifier with bass boost (NS).

Fig. 6-25. Amplifier with a gain of 20 and minimum parts (NS).
Note 1: Twist supply lead and supply ground very tightly.
Note 2: Twist speaker lead and ground very tightly.
Note 3: Ferrite bead is Ferroxcube K5-001-001/3B with 3 turns of wire.
Note 4: R1C1 band limits input signals.
Note 5: All components must be spaced very close to IC.

Fig. 6-26. Power amplifier for an AM radio (NS).
Fig. 6-27. Amplifier with gain of 200 (NS).

Fig. 6-28. Typical 5-watt amplifier (NS).
Fig. 6-29. Bridge amplifier (NS).
Fig. 6-30. Automatic gain control amplifier (NS).

Fig. 6-31. Transducer amplifier (NS).
D1, D2—HEP R0052
D3—HEP R0053
T1, T3—HEP S3001
T2—HEP S5014
T4—HEP S7003
T5—HEP S7002
C1, C3—10μF, 15V, electrolytic
C2—200μF, 6V, electrolytic
C4—50μF, 25V, electrolytic
C5—4000μF, 50V, electrolytic
All resistors 1/2W unless otherwise stated
R1—10kΩ
R2, R3, R4, R9—4.7kΩ
R5—68kΩ
R6—220Ω
R7—50kΩ, trimmer pot
R8—47Ω
R10—2.2kΩ
R11, R12—470Ω
R13, R14—0.27Ω, 5W
SP1—4Ω, 50W speaker capability
Hardware, HEP TO-3 Heat Sink—Mica Insulators, Lafayette 32P05390V

Fig. 6-32. Hi-fi power amplifier.
Fig. 6-33. Gain of 1000 instrumentation amplifier (NS).

Fig. 6-34. Inverting amplifier with balancing circuit (NS).
D1~RCA N-Type Silicon P-I-N Photodiode
- Frequency response of greater than 10 MHz
- If slow rise and fall times can be tolerated the gate on the output can be removed. In this case the rise and the fall time of the LM359 is 40 ns.
- $T_{PDL} = 45$ ns, $T_{PDH} = 50$ ns — T^2 output

Fig. 6-35. Photodiode amplifier (NS).
Fig. 6-36. Meter amplifier (NS).
Fig. 6-37. Microphone amplifier (NS).

*max gain trim

\[Z_{\text{OUT}} \approx 600 \Omega \quad @ 5 \text{ kHz} \]

\[|A_V| \leq 1 \text{ k} \]

\[f_1 \approx 100 \text{ Hz} \]

\[f_2 \approx 5 \text{ kHz} \]

\[R_L \approx 500 \]

Fig. 6-38. Amplifier with digitally programmable gains. (PM).

100
Fig. 6-39. Stereo phonograph amplifier with bass tone control (NS).
Fig. 6-41. MOS memory sense amplifier (S).

Fig. 6-42. Single-stage, wideband amplifier (M).
Chapter 7
Audio Amplifiers and Preamplifiers
Fig. 7-1. Stereo phonograph amplifier with bass tone control (NS).
Fig. 7-2. A 40-watt-8-ohm, 60-watt-4-ohm amplifier (NS).
Fig. 7-3. Amplifier with gain of 200 and minimum Cb (NS).

Fig. 7-4. Load returned to ground. This amplifier has a gain of 20 (NS).
Fig. 7-5. A 2.5-watt bridge amplifier (NS).
Fig. 7-6. Load returned to V_s. This amplifier has a gain of 20 (NS).

Fig. 7-7. Tape preamp with NAB equalization (NS).
Fig. 7-8. Phono preamp with NAB equalization (NS).

Fig. 7-9. Phono amplifier (NS).
Fig. 7-10. A 15-watt per channel audio amplifier (NS).

Fig. 7-11. A 4-watt bridge amplifier (NS).
Fig. 7-12. Rear speaker ambience (4-channel) amplifier — using two LM 378 op amps (NS).
Fig. 7-13. A 10-watt per channel audio amplifier (NS).

$V_s = +22V$

1. **NSP5191**
2. **1/2 LM377**
3. **Rl = 4Ω**
4. **1000μF**
5. **5μF**
6. **27kΩ**
7. **82pF**
8. **5μF**
9. **100kΩ**
10. **100μF**
11. **0.1μF**
12. **250μF**
13. **100kΩ**
14. **2(13)**
Fig. 7-14. Simple stereo amplifier with bass boost (NS).
Fig. 7-15. Stereo amplifier with Av of 200 (NS).
Fig. 7-15. Stereo amplifier with A_v of 200 (NS).

Fig. 7-16. A noninverting amplifier using a split supply. The split supply is also shown (NS).
Voltage gain 34 dB at 1 KHz
Input overload point 100 mVrms at 1 KHz
Output voltage swing 50 Vrms at 1 KHz and 0.1° THD
Output noise level Better than 10 dB below 10 mV phono input (input shorted)

Fig. 7-17. Magnetic phono playback preamplifier/RIAA equalized (NS).

Fig. 7-18. A 20-watt-8-ohm, 30-watt-4-ohm amplifier with a 1-second turn-on delay (NS).
Fig. 7-19. Amplifier with bass boost (NS).

Fig. 7-20. A 2-pole fast turn-on NAB tape preamplifier (NS).
Fig. 7-21. A typical tape playback amplifier (NS).

Fig. 7-22. Low-cost phono amplifier (NS).
Fig. 7-23. A 1-watt (rms) audio amplifier (NS).
Fig. 7-24. Broadband audio amplifier (M).
Fig. 7-25. Typical 4.5-MHz i-f amplifier (M).
Fig. 7-26. Typical 1-watt phonograph amplifier with ceramic cartridge input (M).
Fig. 7-27. Ceramic cartridge amplifier (NS).
Chapter 8
Audio Conditioning Circuits
Fig. 8-1. A 3-band active tone control for bass, midrange and treble (NS).
Fig. 8-2. Alternate bass design active tone control (NS).
Fig. 8-3. A 2-channel panning circuit (NS).

Fig. 8-4. Preamplifier current booster (NS).
Fig. 8-5. LM387 feedback tone controls (NS).
Fig. 8-6. VOX/mike preamp with antitrip.

Fig. 8-7. VOX/mike preamp.
Fig. 8-8. Circuit of preamplifier clipper circuit. Potentiometer adjusts clipping level and may be replaced by fixed resistors once desired level is found.

Fig. 8-9. Squelched preamplifier with hysteresis.
Fig. 8-10. Speech compressor.

Fig. 8-11. Speech compressor using subsequent gain for better control.
Fig. 8-12. Audio compressor uses inexpensive Motorola FETs.

Fig. 8-13. Microphone preamplifier. Mike output low? Fix it with this one. This is for use with a ceramic or crystal microphone or even a phono cartridge. (M).
Fig. 8-14. This schematic from the U.S. Navy's handbook of "preferred circuits" shows an emitter follower that provides 12 dB gain.

Fig. 8-15. Photocell compressor/agc circuit schematic. Voltage rating of capacitor to terminal 10 must be chosen to protect unit from voltage found at sampling point. Dc operating voltage need not be supplied from an extremely well filtered source since audio quality of amplifier is not significant.
Fig. 8.17. Shaping circuitry to be added ahead of existing compressor.
Fig. 8-18. Clipper and filter for use at output of existing audio compressor.
Fig. 8-19. Speech processor increases effectiveness of SSB signal by compression, clipping, and filtering before modulation.
Fig. 8-20. Combination preamp and tone generator.
Fig. 8-21. Speech simulator schematic.

Fig. 8-22. Two-stage clipper/preamp will increase the talk of any rig. Transistors Q1 and Q2 are HEP 54. The diodes are 1N456 or HEP 158.
Fig. 8-23. Two-stage clipper/preamp. Transistors Q1 and Q2 are 2N1304, 2N2926, 2N3391, SK3011, or HEP 54. The diodes are 1N456 or HEP 158.

Fig. 8-24. Audio preamp compressor.
Fig. 8-25. Microphone amplifier using a field-effect transistor has an input impedance of 5 megohms. Q1 is a 2N4360, TIM12, U-112 or U-110. By reversing the polarity of the supply voltage, a 2N3820, MPF 104 or HEP 801 may be used.

Fig. 8-26. This simple dynamic range compressor provides 50 dB range; it exhibits gain with a 20 millivolt signal but will saturate with input voltages up to 6 to 7 volts. All the diodes are 1N914; transistor Q1 should be a 2N2926, 2N3391, SK3010, GE-8 or HEP 54.
Fig. 8-27. Audio conditioning unit (preamplifier/compressor).
Fig. 8-28. Versatile premodulation speech processor.
Fig. 8-29. Clipper/preamp. Transistors Q1 and Q2 are 2N1304, 2N2926, 2N3391, SK3011, or HEP 54. The diodes are IN456 or HEP 158.
Chapter 9
Automotive Circuits
Fig. 9-1. Emergency road flasher.

Parts list
- T1, T2—HEP G0008
- T3—HEP G0005
- T4—HEP G6004
- C1—25µF, 12V electrolytic
- C2—100µF, 12V electrolytic
- R1, R4—2kΩ, 1/2W
- R2, R3—100kΩ, 1/2W
- L1—bulb 12V, 1A GE 1416
- S1—Switch, SPST

Fig. 9-2. Solid-state dwell/tachometer.

Parts list 2
- IC1—SW781, Stewart Warner Corp.
- D1—9.1V, 1W, Zener HEP Z0412
- C1—0.005µF
- C2—0.22µF
- C3—470pF
- R1—6.8kΩ, 1W
- R2—R3—1.2kΩ, 1W
- R4—4.7kΩ, 1/2W
- R5—50kΩ, 1W pot
- R6—3.6kΩ, 1/2W
- R7—500Ω, 1W pot
- R8—220Ω, 1/2W
- X1—transformer (120V to 6.3V) Lafayette 33P80508
- M1—1 mA meter, dc, Lafayette 99P51070V
- S1—4PDT switch, 3 sections, Radio Shack 275-405
Fig. 9-3. Capacitive discharge ignition system.
Fig. 9-4. Electronic regulator for car alternator.
CAR LIGHTS INTERIOR

+12V

CAR DOOR SWITCH (SWITCH OPENS WHEN DOOR CLOSES)

Parts list 4
IC1—MC1555 T1—HEP S7004 R1—1kΩ R2—470Ω R3—560kΩ R4—10Ω R5—180μF R6—100kΩ R7—10kΩ R8—2.2kΩ
D1—HEP R0050 T2—HEP S0019 C1, C2—22μF, 25V electrolytic R4—10Ω R5—180μF R6—100kΩ otherwise stated
D2—HEP R0600 T3—HEP S0015 All resistors 1/2W unless R1—1kΩ R2—470Ω

Fig. 9-5. Car door light delay.
Car Circuit Components

Fig. 9-6. Microswitch vehicle immobilizer for positive voltage grounds.

Parts list 10
IC1—HEP C4000P
T1—HEP S0015
D1, D2—HEP R0050
D3, D4, D5—HEP R0052
C1—470μF, 25V, electrolytic
C2—1μF, nonpolarized
R3—3 9MΩ
R4—1 5MΩ
R1—330kΩ
R2, R5—10kΩ
RY1, RY2—12V relay, Lafayette 30P20047
Fig. 9-7. Automobile immobilizer for minus ground systems.
Fig. 9-8. Frequency-to-voltage converter (tachometer) output.

Fig. 9-9. 12 V flasher.
Fig. 9-10. Auto headlight reminder.

T1—HEP S0019
T2—HEP S5011
D1, D2—HEP R0052
All resistors 1/4W
R1—4.7kΩ
R2—1.2kΩ
R3—100Ω
R4—470Ω

CONNECT TO ANY ACCESSORY +12V LEAD WHICH IS CONTROLLED BYignITION SWITCH

EXISTING LIGHT SWITCH
TO PARKING LIGHTS
TO HEADLIGHTS
CONNECT TO HORN BUTTON LEAD
HORN RELAY
HEP S5011
T2
R0052 (2)
R3 100Ω
R4 47Ω
T1
R1 4.7kΩ
CONNECT TO HORN BUTTON ON STEERING WHEEL
HORN +12V
Fig. 9-11. Auto wiper control.
Chapter 10
Battery Chargers
*Rs—sets output impedance of charger \(Z_{\text{OUT}} = R_s \left(1 + \frac{R_2}{R_1} \right) \)

Use of \(R_s \) allows low charging rates with fully charged battery.

Fig. 10-1. A 12-volt battery charger.

Fig. 10-2. A 50-mA constant current battery charger.
LM317HV

Fig. 10-3. Current limited 6-volt battery charger.

\[V_{IN} \rightarrow V_{OUT} \]

- 1000 μF
- 2N2222
- 100
- 1.1k
- 240

Sets peak current (0.6A for 1Ω)

1000 μF is recommended to filter out any input transients.

Fig. 10-4. Simple 12-volt battery charger. AN LM 350 chip can be substituted for the LM338.

- **R_S**—sets output impedance of charger \(Z_{OUT} = R_S (1 + \frac{R_2}{R_1}) \)
- Use of **R_S** allows low charging rates with fully charged battery.

1000 μF is recommended to filter out any input transients.
* Sets peak current (2A for 0.3Ω)

** 1000 µF is recommended to filter out any input transients

Fig. 10-5. Current limited 6-volt charger.

Fig. 10-6. A 12-volt battery charger. An LM338 chip can be substituted for the LM350.
Fig. 11-1. Isolation amplifier for medical telemetry (NS).

Fig. 11-2. Fetal heartbeat monitoring input circuitry using an Analog Devices 284-J isolation amplifier (AD).
Fig. 11-3. Multilead EKG recorder input circuitry using a 284J isolation amplifier (AD).
Fig. 11-4. Heart rate monitor (M).
Fig. 11-5. EKG input amplifier using an optically coupled 3652 HG isolation amplifier to protect the patient from possible lethal potentials (BB).
NOTE 1. GAIN RESISTOR, R1, 1%, 50ppm/^°C METAL FILM TYPE IS RECOMMENDED. FOR GAIN > 10V/V, LEAVE TERMINAL 2 OPEN RDR GAIN = 100V/V, SHORT TERMINAL 2 TO TERMINAL 1

\[\text{GAIN} = 1 + \frac{10 \times R_2}{R_1} \]

NOTE 2. GUARO RESISTOR, R0, REQUIRED ONLY FOR CMV > ±2500Vpk (±5kVpk MAX). R0 MAY BE MOUNTED ON AC1049 MOUNTING SOCKET USING STANDOFF PROVIDED, (USE 1/4 WATT, 5% CARBON COMPOSITION TYPE ALLEN BRADLEY RECOMMENDED).

NOTE 3. OUTPUT FILTER CAPACITOR, C, SELECT TO ROLLOFF NOISE ANO OUTPUT RIPPLE (e.g., SELECT C = 1.5uF FOR DC TO 1000Hz BANDWIDTH)

Fig. 11-6. Isolation amplifier for biomedical and industrial applications (AD).
Chapter 12
Bridge Circuits
Fig. 12.1. A 16-watt bridge amplifier.
Fig. 12-2. An 8-watt bridge amplifier.

Fig. 12-3. Bridge amplifier.
Fig. 12-4. A 16-watt bridge amplifier.
Fig. 12-5. A 12-watt bridge amplifier.
Chapter 13
Chopper Circuits
Fig. 13-1. MOSFET analog switching circuit (chopper) for large input voltages (M).

MAXIMUM CHOPPING FREQUENCY \(f_{\text{max}} \approx 5 \text{ MHz} \)
MAXIMUM INPUT VOLTAGE \(E_s (\text{max}) \approx +0.5 \text{ V}, -4.0 \text{ V} \)

Fig. 13-2. Series-shunt chopper for high-frequency applications using complementary enhancement mode MOSFETs (M).
Fig. 13-3. Series chopper for large input voltages using an N-channel JFET (M).

Fig. 13-4. JFET chopper with extended range of ±10 volts (M).
MAXIMUM CHOPPING FREQUENCY $f_{(\text{max})} \approx 5 \text{ MHz}$
MINIMUM INPUT VOLTAGE $E_s (\text{min}) \approx \pm 10 \mu \text{V}$

Fig. 13-5. Series-shunt chopper for low input voltages (M).

MAXIMUM CHOPPING FREQUENCY $f_{(\text{max})} \approx 200 \text{ kHz}$
MAXIMUM INPUT VOLTAGE $E_s (\text{max}) \approx +2 \text{ V}, -0.4 \text{ V}$

Fig. 13-6. Series chopper using an N-channel JFET (M).
Fig. 13-7. MOSFET chopper with extended range of ±3 volts (M).
Chapter 14
Computer-Related Circuits
Fig. 14-1. Large fan-in AND gate (NS).

Fig. 14-2. AND gate (NS).
Fig. 14-3. OR gate (NS).

Fig. 14-4. Quad MOS clock driver with 7001 type 1K RAM (M).
Fig. 14-5. Multiple output switching regulator for use with microprocessing units (M).
Ramp Control
MC1505 Pin 10

Comparator Input
MC1505 Pin 9

0.1 μF
C

2 Volt Full Scale Input 100 Count Delay

R

Fig. 14-6. A 3-½ digit BCD A/D converter (M).

NOTES:
1. NOR Gates — MC14001 or equiv
 Inverters — MC14049 or equiv
 NAND Gates — MC14011 or equiv.
2. The clock period should be greater than twice the worst case ripple delay through
 the counters to achieve full accuracy.
Fig. 14-7. Quad MOS clock driver with 1103 type 1K RAM (M).

Fig. 14-8. Basic 8-bit fully buffered accumulator (S).
Fig. 14-9. An 8-bit A/D add/subtractor (S).
Fig. 14-10. Complete 8-bit A/D converter (PM).
Fig. 14-11. An 8-bit tracking A/D converter (PM).
Fig. 14-12. A 10-bit A/D converter (PM).
Fig. 14-13. A 4-channel BCD DAC (PM).
Fig. 14-14. A 4-channel binary DAC (PM).
Fig. 14-15. Programmable peak detector (PM).
Fig. 14-16. Clickless attenuator/amplifier (PM).

Fig. 14-17. Sign and magnitude clickless attenuator/amplifier (PM).
Fig. 14-18. An 8-channel encoder (PM).
Fig. 14.19. External reference connection (PM).

Fig. 14.20. Digitally programmed level detector (PM).
CAN BE EXPANDED TO 3 DIGITS BY ADDITION OF A THIRD DAC-100 AND 99 TO CURRENT DIVIDER

Fig. 14-21. Binary-coded-decimal D/A converter (PM).

Fig. 14-22. Analog sum of two digital numbers (PM).
Fig. 14-23. An 8-bit ADC (PM).

NOTE
For a complete treatment of SA ADC's, constructed with the DAC-100, refer to AN-11, "A Low Cost, Easy-to-Build Successive Approximation A/D Converter..."
Chapter 15
Control and Tone Circuits, CORs and Repeater Circuits
Fig. 15-1. Temperature controller (NS).

Fig. 15-2. Light controller (NS).
Fig. 15-3. Motor speed control (NS).
Fig. 15-4. Basic temperature controller (NS).

Fig. 15-5. Proportioning temperature controller (NS).

Note 1: \(C1 \) determines proportioning frequency \(f = \frac{1}{2R4C1} \)

Note 2: \(R10 = \frac{\left| V^+ - V^- \right| - 7}{0.0015} \)

Note 3: Either \(V^- \) or \(V^+ \) can be ground.
Output goes positive on temperature increase

* Output goes positive on temperature increase

*Set temperature

Fig. 15-6. Temperature controller with hysteresis (NS).

Under balanced conditions, $V_{\text{SENSE}} - V_{\text{REF}}$ appears across R_S, $V_a - V_b$ appears across R_G and $I_{RG} = I_{RS}$.

$$\frac{V_a - V_b}{R_G} = \frac{V_{\text{SENSE}}}{R_S} \quad \text{or} \quad V_a - V_b = V_{\text{SENSE}} \frac{R_G}{R_S}$$

V_{SENSE} is fixed by the temperature control resistor and R_G/R_S is constant. The LF152 is used as a comparator with a feedback loop closed through the heater and the temperature dependent resistor. If $V_a - V_b > V_{\text{SENSE}} R_G/R_S$, the output goes high turning "ON" the heater. If $V_a - V_b < V_{\text{SENSE}} R_G/R_S$, the output goes low turning "OFF" the heater.

Fig. 15-7. Temperature control circuit (NS).

203
Fig. 15-8. Motor speed control (NS).

Fig. 15-9. Light-level controller (NS).
Fig. 15-10. Temperature controller (RCA).
Fig. 15-11. A 3-phase heater control that uses zero-voltage synchronous switching in the steady-state operating conditions (RCA).
Fig. 15-12. A 3-phase power control that employs zero-voltage synchronous switching for both steady-state operation and for starting (RCA).

Fig. 15-13. A 3-phase control circuit for an inductive load, such as a 3-phase motor (RCA).
Fig. 15-14. Tone decoder for repeaters does not false-trip. Transistors are 2N3859A types unless otherwise noted.
Fig. 15-15. There are many methods for keying continuous-tone-carrier-squelch (PL) systems, but those employing delayed dropout relays are the most successful. Here, the tone and the signal must be present to hold the repeater on the air. Momentary tone variations because of weak signal will not cause "cycling" because of the delay, but the repeater will drop out instantly if the carrier itself drops out.

Fig. 15-16. A COR circuit using the 741 op-amp.
Fig. 15-17. Electronic control of a dc relay (M).

Fig. 15-18. Solid-state telephone ring relay. Ring signal from telephone company lights neon lamp, which causes drop in resistance in CdS cell, turning on transistor, which closes the relay. Circuit has two nice advantages—since there is no direct connection from telephone line to power supply circuit, you don't have to worry about inducing hum into the line. Also, neon lamp acts like an open circuit when not lit (below about 65V), and above that voltage has a resistance quite high (in series with 220K)—all this means is that the phone company has to stand on its head before they can detect this on your line. Instead of Clairex lamp/photocell module, you can use NE-2 neon bulb taped against a cheap CdS cell.
Fig. 15-19. Solid-state carrier-operated relay uses dual-gate FET.

Simple hook-up for a Touch-Tone pad

Fig. 15-20. A 1½V hearing aid battery mounted inside handset. C1 is approximately a 0.5—3 μF, with 1½V.
Fig. 15-21. Dual-tone sequential selective calling decoder. Upper-right drawing shows switch connections (can be used to sound auto horn).
Fig. 15-22. Carrier-operated relay and 3-minute limit timer for repeater control applications.
Fig. 15-23. Tone generator features CTCSS (low-frequency) or burst (high frequency) outputs. All gates are part of Motorola MC 14001 integrated circuit.
Fig. 15-24. Fixed-frequency oscillator. Components marked with asterisk: C1 & C2 are 0.001 μF, and R1 & R2 are 15.8K for audio frequency of 10 kHz.

Fig. 15-25. Continuous-tone encoder produces about 100 Hz for superimposition on rf carrier, for CTCSS applications.
Fig. 15-26. K6ASK single tone encoder.

Fig. 15-27. 1800-Hz decoder.

Fig. 15-28. Decoder for frequency-shift keying system uses phase-locked loop and uA710 operational amplifier. Frequency of operation: 1070 & 1270 Hz.
Fig. 15-29. Schematic of a COR circuit for the IC20/21. R4 must be adjusted to keep the collector current of the transistor less than 750 mA. The value is dependent on the relay resistance. The R2/C1 combination control tail time.

Fig. 15-30. Complete electromechanical control system for remotely operated (radio) telephone (land line).
Component values (typical)—
R1: 6.8 to 15K; R2: 4.7K; R3: 20K; C1: 0.10 μF; C2: 1.0 μF, 6V; C3: 2 μF, 6V; C4: 250 μF, 6V.
Fig. 15-32. Paging decoder provides relay contact closure when 2805 Hz audio signal is applied at input.
Fig. 15-33. Tone generator uses MOS circuitry; gates are all part of RCA CD4001/D or CD4001/E. Unit designed for tone-burst keying when connected to transmitter. Chart shows R3 values when C2 = 820 pF.

<table>
<thead>
<tr>
<th>Tone (Hz)</th>
<th>R3 (k-Ohms)</th>
<th>Tone (Hz)</th>
<th>R3 (k-Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,800</td>
<td>288</td>
<td>2,200</td>
<td>231</td>
</tr>
<tr>
<td>1,850</td>
<td>279</td>
<td>2,250</td>
<td>226</td>
</tr>
<tr>
<td>1,900</td>
<td>271</td>
<td>2,300</td>
<td>220</td>
</tr>
<tr>
<td>1,950</td>
<td>264</td>
<td>2,350</td>
<td>215</td>
</tr>
<tr>
<td>2,000</td>
<td>257</td>
<td>2,400</td>
<td>210</td>
</tr>
<tr>
<td>2,050</td>
<td>250</td>
<td>2,450</td>
<td>206</td>
</tr>
<tr>
<td>2,100</td>
<td>243</td>
<td>2,500</td>
<td>201</td>
</tr>
<tr>
<td>2,150</td>
<td>237</td>
<td>2,805</td>
<td>178.5</td>
</tr>
</tbody>
</table>

R1 – 1 k
R2 – 910 k - 1.1 M
R3 – (see Table 1)
R4 – 51 k
R5 – 51 k
R6 – 510 ohms
R7 – 11 M

C1 – 5 µf or greater, tantalum
C2 – 820 pf, mylar or silver mica (see text)
C3 – 0.047 µf
C4 – 0.082 µf
Z1 – 6-10 volt Zener diode
Fig. 15-34. The complete whistle-on repeater control system contains two timers and an ordinary relay. If a carrier stays on for more than 1.5 minutes, the push-to-talk circuit is disconnected. If the carrier stays on 6.5 minutes, the repeater shuts down and must be whistled on again. Also, if nobody uses the repeater for 5 minutes, shutdown will occur.
Fig. 15-35. Tone decoder for CTCSS (continuous-tone carrier squelch system) applications operates from frequencies in 100 Hz range.
Fig. 15-36. A heavy-duty relay slaved to the carrier-operated relay, along with ground and voltage outputs from the tone decoder, can be used to provide a variety of very useful logic signals for all repeater control functions.
Fig. 15-37. Tone-burst entry is becoming increasingly common as a requirement—repeaters in many parts of the country now require anything from 1800 Hz to 2400 Hz for entry. The circuit above is for a tone-burst generator to meet these requirements. Circuits courtesy of the Central Ohio Radio Club FM News, September 1971.
Fig. 15-38. Electromechanical latching relay pair. Relay type is not critical. On pulse pulls in primary power switching contacts, which lock because coil voltage is delivered through its own contacts. A short off pulse is all that’s required to break the circuit.

Fig. 15-39. A 1000 Hz decoder provides relay closure when audio signal of proper frequency appears at input.
Fig. 15-40. A 24% bandwidth tone decoder.

Fig. 15-41. Light-triggered tone oscillator that can find numerous applications as a burglar alarm, or even to let you know that the sun has come up and it's time to go to work (M).
Fig. 15-42. Single-transistor tone oscillator for tone-burst or whistle-on repeater-access use produces 1750 Hz at sufficient amplitude for most transmitters.

Fig. 15-43. This single-tone decoder has a high degree of selectivity, stability, and reliability.
Fig. 15-44. Resistor and capacitor values chosen for desired frequencies and bandwidth. If C_3 is made large so as to delay turn-on of the top 567, decoding of sequential (f_1, f_2) tones is possible.

Fig. 15-45. Tone-burst repeaters can be set up with nothing more than a relay and a timer if the decoder and COR logic signals are available. Here, a short tone burst will energize the control relay, which latches as long as a carrier stays on the input. If the carrier stays on more than 1.5 minutes, the repeater will go off the air and a new tone will be required. Each transmission must be accompanied by the proper tone burst.
<table>
<thead>
<tr>
<th>Component</th>
<th>87—112 Hz range</th>
<th>1750 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>10 pot (multiturn)</td>
<td>50K pot (multiturn)</td>
</tr>
<tr>
<td>R2, 3, 5</td>
<td>10K</td>
<td>47K</td>
</tr>
<tr>
<td>R4</td>
<td>10K</td>
<td>22K</td>
</tr>
<tr>
<td>R5</td>
<td>10K</td>
<td>47K</td>
</tr>
<tr>
<td>R6</td>
<td>5.1K</td>
<td>5.1K</td>
</tr>
<tr>
<td>R7</td>
<td>5K pot (multiturn)</td>
<td>4.7K (multiturn)</td>
</tr>
<tr>
<td>R8</td>
<td>300Ω</td>
<td>300Ω</td>
</tr>
<tr>
<td>R9</td>
<td>0.1μF</td>
<td>0.001 μF</td>
</tr>
<tr>
<td>C1, 2, 3</td>
<td>47 μF, 20V tantalum</td>
<td>47 μF, 20V tantalum</td>
</tr>
<tr>
<td>C4</td>
<td>0.01 μF</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td>tantalum</td>
</tr>
<tr>
<td>Q1</td>
<td>2N930</td>
<td>2N930</td>
</tr>
<tr>
<td>Q2</td>
<td>2N2369</td>
<td>2N2369</td>
</tr>
</tbody>
</table>

Fig. 15-46. Tone encoder. Part values shown in diagram are for low-frequency continuous-tone carrier squelch system (CTCSS) applications; for single-tone refer to accompanying table.
Fig. 15-47. Single-tone decoder.

Fig. 15-48. Simple tone encoder for radio remote control applications. C2 is 10 times the value of C1. For 1000 Hz, C1 = 0.22 μF, and C2 is 2 μF. Both capacitors should be nothing less than mica for stability.
Fig. 15-49. Schematic of a COR circuit for the TR22. R4 must be adjusted to keep the collector current of the transistor less than 750 mA. The value is dependent on the relay resistance. The R2/C1 combination controls tail time.

Fig. 15-50. Simple tone oscillator connects to wiper arm of any portable radio's volume control to convert radio into audible tone generator—for keying repeaters and commanding other remotely controllable functions by holding portable radio up to microphone.
Fig. 15-51. Schematic of a subaudible tone generator. Q1, 2—MPS6513; Q3—2N1613.
Fig. 15-52. This audio decoder responds to signals in the frequency range of 2200-2900 Hz. Although Motorola part numbers are shown, equivalent values may be substituted.
Fig. 15-53. A simple and stable subaudible tone generator for CTCSS use with FM repeaters. With miniature components it can be made postage-stamp size and tucked away into any rig. For stability, Mylar capacitors and film resistors are best, but carbon resistors can be substituted successfully. It was originally designed for 100 Hz output and the 20K potentiometer is used for adjusting this to optimum.
Chapter 16
Converters
Fig. 16-1. Frequency-to-voltage converter with 2-pole Butterworth filter to reduce ripple (NS).

\[f_{\text{POLE}} = \frac{0.707}{2\pi RC} \]

\[\tau_{\text{RESPONSE}} = \frac{2.57}{2\pi f_{\text{POLE}}} \]

Fig. 16-2. Fast AC/DC converter (NS).
Fig. 16-3. True rms converter (NS).
\[V_O = \frac{1V}{R_{LADDERS}} \times R_X \]

Where \(R_{LADDERS} \) is the resistance from switch S1 pole to pin 10 of the LF354.

Fig. 16-4. Ohms-to-volts converter (NS).
Fig 16-5. Various voltage-to-frequency converters with isolators (NS).
Fig. 16-6. Remote voltage-to-frequency converter with 2-wire transmitter and receiver (NS).

Fig. 16-7. Voltage-to-frequency converter with square wave output using \(\div 2 \) flip-flop (NS).
Fig. 16-8. Voltage-to-frequency converter with isolators (NS).

Fig. 16-9. CMOS/TTL to MOS logic converter (NS).
Fig. 16-10. A 3V to 25V DC-DC converter that uses an MC3380P chip (M).

Notes:
1. All resistor values in ohms, ±1%, 1/4 W
2. All capacitor values in μF, ± 20%, except * ± 5%.
3. All inductors ± 4%.
Fig. 16-11. Two 12V-to-15V level conversion circuits.

Fig. 16-12. Light intensity-to-frequency converter (NS).
Fig. 16-13. Temperature-to-frequency converter (NS).

Fig. 16-14. DC-DC converter (+15V to -15V).

244
Fig. 16-15. DC-DC converter (+5V to +15V and -15V).
Chapter 17
CW Circuits
Fig. 17-1. A 1-watt CW final amplifier (NS).

Fig. 17-2. Key click filters.
Fig. 17-3. Simple grid block keying.
Chapter 18
Data Transfer Circuits
Fig. 18-1. Digital data transmission (NS).
Chapter 19
Demodulators
Fig. 19-1. A 2400-Hz synchronous AM demodulator (NS).
Chapter 20
Detectors
Fig. 20-1. Peak detector and hold circuit (NS).

Fig. 20-2. Negative peak detector (NS).
Fig. 20-3. Positive peak detector (NS).

Fig. 20-4. Zero crossing detector driving MOS logic (NS).
Fig. 20-5. Zero crossing detector driving a MOS switch (NS).

Fig. 20-6. Detector for a magnetic transducer (NS).
Fig. 20-7. Zero crossing detector with a single power supply (NS).

Fig. 20-8. Window detector (NS).
Fig. 20-9. Photodiode detector (S).

Fig. 20-10. Envelope detector (M).
Fig. 20-11. Level detector with lamp driver (NS).

Fig. 20-12. Missing pulse detector using an ECG955M timer/oscillator chip. The timing cycle is continuously reset by the input pulse train. A change in frequency or missing pulse allows completion of the timing cycle, which causes a change in the output level. The time delay should be set a little longer than normal between pulse for this reason (GTE).
Fig. 20-13. Digitally programmable limit detector (AD).

Fig. 20-14. Phase-sensitive detector with square-wave reference. If the input and reference are in phase the output is positive. If they are 180° out of phase the output is negative (AD).
Fig. 20-15. Signal-level envelope detector. The MC1535G is a dual op amp and the MC844P a dual power gate. This circuit indicates by way of the lamp when the input signal is out of range (M).
Fig. 20-16. Phase-sensitive detector for sinusoidal signals. This circuit measures the magnitude of in-phase or 180°-out-of-phase inputs with the proper polarity, depending on the relationship to the reference with less than 1 percent. The op amp shown is a AD741J (AD).
Chapter 21
Diode Circuits
Fig. 21-1. The most popular rectifier circuits with their output voltages and minimum safe diode PIV rating.
Fig. 21-2. Resistors are used across series diodes to equalize reverse voltage drop.

Fig. 21-3. Simple shunt rectifiers can provide low bias voltages.
Fig. 21-4. This circuit gives two outputs, 600V and 250V.

Fig. 21-5. A basic zener regulator. The values depend on input and output voltage, current, etc.
Fig. 21-6. Forward-biased silicon diodes can be used as low-voltage zeners. Their temperature drift is opposite that of regulators with breakdown voltages over 6V, which is convenient for temperature stabilization.

Fig. 21-7. A zener can be used as a ripple filter and to "increase" the voltage rating of a capacitor.
Fig. 21-8. Two zeners can furnish a regulated low voltage.

Fig. 21-9. Zener regulators can be used on AC, too.
Fig. 21-10. A bridge average-reading AC meter.

Fig. 21-11. A bridge peak-reading AC meter.
Fig. 21-12. A peak-to-peak AC meter is simply a voltage doubler.

Fig. 21-13. A half-wave peak-reading AC meter.
Fig. 21-14. A half-wave peak-reading AC meter that requires no DC path.

Fig. 21-15. A semi-rms AC meter.
Fig. 21-16. A meter for AC, or either polarity DC.

Fig. 21-17 Using clamp diodes to improve response.
Fig. 21-18. This circuit partially suppresses the low end of a range.

Fig. 21-19. This is a meter-protective circuit. The zener should be tapped on the resistor chain at a point that provides conduction when the meter pointer is pinned.
Fig. 21-20. Conventional silicon diodes can protect a meter movement, too. The 0.005 μF capacitor bypasses rectified rf.

Fig. 21-21. A basic diode mixer as used at UHF and microwave.
Fig. 21-22. A half-wave detector. This can be used as a crystal set, too.

Fig. 21-23. This detector provides better results.
Fig. 21-24. A product detector for 9 MHz SSB. The values in parentheses are for 455 kHz.

Fig. 21-25. A popular product detector for SSB.
Fig. 21-26. Forward transistor agc.

Fig. 21-27. An auxiliary agc diode improves agc action.
Fig. 21-28. An auxiliary agc detector can be used with a product detector for SSB/CW.

Fig. 21-29. Simple diode squelch.
Fig. 21-30. Adapter to provide SSB/CW reception and Q-multiplication in a receiver.

Fig. 21-31. This circuit uses a diode to limit the output of an oscillator.
Fig. 21-32. Diodes can be used to protect a transistor rf amplifier from burnout.

Fig. 21-33. One of the best noise limiters is the rate-of-change limiter designed for TV audio in England.
Fig. 21-34. This simple noise limiter is installed in an i-f stage for SSB and CW.

Fig. 21-35. This is an improved version of the SSB i-f noise limiter.
Fig. 21-36. A diode ring balanced modulator.

Fig. 21-37. Foster-Seeley FM discriminator.
Fig. 21-38. A 10.7 MHz FM ratio detector.

Fig. 21-39. Shunt diode noise limiter for use across a loudspeaker.
Fig. 21-40. Shunt diode noise limiter that can be easily added to the input of an audio amplifier.

Fig. 21-41. Half-wave series noise limiter with adjustable clipping level.
Fig. 21-42. Full-wave series noise limiter.

Fig. 21-43. This trough limiter will eliminate the background noise that is ignored by conventional limiters.
Fig. 21-44. A varactor is often used to provide automatic frequency control. The control voltage is provided by a discriminator.

Fig. 21-45. An rf stage or oscillator can be tuned with a varactor.
Fig. 21-46. Simple clippers can be made from zener diodes or silicon diodes.

Fig. 21-47. The compressor can provide 25 dB of compression, but the expense of up to 60 dB loss.
Fig. 21-48. A good clipper for AM or FM use includes adjustable clipping level and a harmonic filter.

Fig. 21-49. The need for high-level negative-peak clipping is often debated, but its value is championed by many.
Fig. 21-50 A diode can be used for direct frequency modulation.

Fig. 21-51. This is a basic varactor doubler.
Fig. 21-52. This is a popular balanced modulator for generating DSB (and eventually SSB).

Fig. 21-53. Bridge balanced modulator for SSB.
Fig. 21-54. A pair of diode switches can be used to select upper- or lower-sideband-generating crystals.

Fig. 21-55. These diode switches can be used in a transceiver or other type of equipment to select either of two inputs.
Fig. 21-56. A diode switch is used to connect a small capacitor to a VFO to shift its frequency slightly for radioteletype.

Fig. 21-57. A practical high-pe varactor tripler.
Fig. 21-58. A diode can be used for very simple spotting in a CW transmitter.

Fig. 21-59. A simple field-strength meter.
Fig. 21-60. This voltage-doubling field-strength meter is not frequency-selective.

Fig. 21-61. A special type of field-strength meter for use in a car.
Fig. 21-62. The rf sniffer is a wide-range sensitive rf detector.

Fig. 21-63. A wavemeter is simply a field-strength meter tunable to frequency. It is especially useful for checking transmitter harmonics.
Fig. 21-64. This tunable VHF wavemeter/FSM/monitor covers 6 and 2 meters.

Fig. 21-65. A dummy load should be used for all possible transmitter testing. An rf voltmeter connected to the dummy load makes it a wattmeter. A single diode is limited in voltage rating, so a voltage divider must be used for high power.
Fig. 21-66. An SWR bridge is valuable for adjusting an antenna. The critical part of the bridge is a piece of coax cable with an extra wire inserted between the cable dielectric and the shield.

Fig. 21-67. This antennascope is a simple antenna impedance bridge. It should be constructed compactly for best high frequency use.
Fig. 21-68. The James Dandy mixer is a general-purpose untuned mixer useful as an impromptu frequency meter, receiver, detector, etc.

Fig. 21-69. This amplitude modulator can be used to modulate the output of any low-level CW source.
Fig. 21-70. This audio frequency meter must be calibrated before use. It requires an input of 10V.

Fig. 21-71. This audio frequency meter/tachometer is self-limiting and linear reading. Either two zeners or two conventional diodes and batteries can be used to set the proper input voltage.
Fig. 21-72. A diode noise generator is very useful in aligning a receiver for lowest noise figure.

Fig. 21-73. A general-purpose rf detector probe for use with an oscilloscope or voltmeter.
Fig. 21-74. This simple sawtooth generator could be added to a monitor oscilloscope.

Fig. 21-75. Two zeners can be used to produce a highly clipped sine wave very similar to a square wave.
Fig. 21-76. A transmitter can be keyed by a tape recorder for automatic code practice with this circuit.

Fig. 21-77. A field-strength meter can key a code oscillator to form a CW monitor.
Fig. 21-78. A pulse generator is needed to adjust noise limiters for best results.

Both diodes are IN1396 (in heat sink)

Fig. 21-79. Here's how to use two batteries in your car, one for communications gear and one for the rest of the car needs. The diodes act as oneway switches, keeping the batteries charged, yet preventing any power from flowing from one to the other.
Fig. 21-80. These two circuits protect equipment from incorrectly polarized voltage. The single diode keeps the equipment from working when the polarity is wrong, while the bridge automatically selects the proper polarity.

Fig. 21-81. A battery can be floated across a power supply, keeping it charged and providing automatic switching from ac to battery power.
Fig. 21-82. Zeners can be used in dc-coupled amplifiers to replace coupling capacitors.

Fig. 21-83. Diodes can provide an artificial centertap for push-pull amplifiers.
Fig. 21-84. A zener can protect any critical load from overvoltage.

Fig. 21-85. A diode is often used to provide temperature-compensated bias for class B amplifiers.
Fig. 21-86. A zener can furnish stable screen or grid bias for a vacuum tube.

Fig. 21-87. Zeners can protect a delicate filament from overvoltage.
Fig. 21-88. A diode can damp the field generated by a coil when current through it is disconnected.

Fig. 21-89. The conventional agc system used in tube-type receivers.
Fig. 21-90. Delayed agc acts only on strong signals.

Fig. 21-91. Reverse agc for a transistor/receiver.
Fig. 21-92. "A" is a varactor tripler or doubler.

Fig. 21-93. This circuit will disconnect a load when voltage drops below a minimum.
Fig. 21-94. This transmit-receive switch can be used at VHF if it is constructed carefully.

Fig. 21-95. This is a lamp dimmer providing two brilliance positions: half on and full on.
Fig. 21-96. An input voltage over the zener voltage energizes the relay.

Fig. 21-97. A diode can control the bypassing of an emitter bypass capacitor to change an amplifier's gain.
Fig. 21-98. In position 0 neither relay is energized. In position 3 both are energized. In 2, relay 2 is on and in 1, relay 1 is on.

Fig. 21-99. In this scheme, a varying input voltage selects relay contacts in turn.
Fig. 21-100. A high-frequency antenna switch using diodes.

Fig. 21-101. Diodes can be used for mysterious switching of two lamps with one pair of wires.
Fig. 21-102. "Hand" agc for SSB/CW reception.

Fig. 21-103. A zener and a low-voltage meter can be used to suppress the low end of a range.
Chapter 22
Filters
Fig. 22-1. Voltage controlled low-pass filter (NS).

Fig. 22-2. High pass filter (NS).
Fig. 22-3. 4.5-MHz notch filter (NS).

\[
\begin{align*}
\text{Fig. 22-4. High-pass active filter (NS).}
\end{align*}
\]
Fig. 22-5. Bi-quad active filter (second degree state-variable network) (NS).

Fig. 22-6. Multiple feedback bandpass 1-kHz filter (M).
Fig. 22-7. High-performance 2-amplifier bi-quad filter(s) (NS).
\[Q = \sqrt{\frac{R8}{R7}} \cdot \frac{R1C1}{\sqrt{R3C2R2C1}} \]
\[f_0 = \frac{1}{2\pi} \sqrt{\frac{R8}{R7}} \cdot \frac{1}{\sqrt{R2R3C1C2}} \]
\[f_{\text{NOTCH}} = \frac{1}{2\pi} \sqrt{\frac{R6}{R3R5R7C1C2}} \]

Necessary condition for notch: \(\frac{1}{R6} = \frac{R1}{R4R7} \)

Ex: \(f_{\text{NOTCH}} = 3 \text{ kHz}, Q = 5, R1 = 270k, R2 = R3 = 20k, R4 = 27k, R5 = 20k, R6 = R8 = 10k, R7 = 100k, C1 = C2 = 0.001 \mu F \)

Better noise performance than the state-space approach

Fig. 22-8. Three-amplifier bi-quad notch filter (NS).
80 Hz TO 130 Hz TUNABLE BANDPASS FILTER
BANDWIDTH = 2.5 Hz, SINGLE SUPPLY

125 Hz TO 270 Hz TUNABLE BANDPASS FILTER
BANDWIDTH = 5 Hz, DUAL SUPPLIES

Fig. 22-9. Bandpass filters (NS).
Fig. 22-10. LM387 bandpass active filter (NS).

Fig. 22-11. 20 kHz bandpass active filter (NS).

\[A_0 = -1 \]
\[f_0 = 20 \text{ kHz} \]
\[Q = 10 \]
\[\text{THD} < 0.1\% \]
Use general equations, and tune each section separately

\[Q_{1st\,SECTION} = 0.541, \quad Q_{2nd\,SECTION} = 1.306 \]

The response should have 0 dB peaking.

Fig. 22-12. A 1 kHz 4 pole butterworth (NS).

For a given

- \(f_0 \) = center frequency
- \(A(f_0) \) = Gain at center frequency
- \(Q \) = quality factor

Choose a value for \(C \), then

\[R_2 = \frac{R_1 R_5}{4Q^2 R_1 R_5} \]

To obtain less than 10% error from the operational amplifier

\[Q \cdot f_0 < 0.1 \]

GBW

where \(f_0 \) and GBW are expressed in Hz. GBW is available from Figure 6 as a function of Set Current, I_set

Fig. 22-13. Multiple feedback bandpass filter (M).

324
Chapter 23
Frequency Multipliers
Fig. 23-1. Frequency multiplier (x10) (NS).
Fig. 23-2. Four-quadrant multiplier (NS).

Fig. 23-3. Frequency doubler with linear amplitude response (AD).

\[E_O = \frac{E_1^2 - E_1^2 \cos 2\omega t}{2 E_0} \]

\[E_O = K E_1 - K E_1 \cos 2\omega t \]
The frequency doubler circuit shown will double low-level signals with low distortion. The value of C should be chosen for low reactance at the operating frequency.

Signal level at the carrier input must be less than 25 mV peak to maintain operation in the linear region of the switching differential amplifier. Levels to 50 mV peak may be used with some distortion of the output waveform. If a larger input signal is available a resistive divider may be used at the carrier input, with full signal applied to the signal input.
Fig. 23-5. Frequency doubler. This circuit accepts a sinusoidal signal with a 10-volt amplitude and produces a double-frequency signal also having a 10-volt amplitude with no DC offset (AD).

Fig. 23-6. Low-frequency doubler using an MC1596G. This circuit works well in the low-frequency and audio range below 1 MHz (M).
Fig. 23-7. A 150-MHz to 300-MHz frequency doubler using an MC1596G. Spurious outputs are 20 dB below the desired output (M).
Chapter 24
Gadgets
Fig. 24-1. Carrier-current remote control or intercom (S).

Fig. 24-2. Intercom (NS).

332
Fig. 24-3. Two-phase motor drive (NS).

Fig. 24-4. On/off touch switch (RCA).
Fig. 24-5. Sophisticated beat frequency oscillator type metal locator utilizing headphones to amplify the "beat" tone.
Fig. 24-6. Flickering flame effect.

Fig. 24-7. Hearing aid.
Fig. 24-8. Bicycle lighting system.

Fig. 24-9. Clicker circuit.
Parts list
T1—HEP S0011
C1, C2—0.001 μF, 100 Vdc disc
C3—50 pF trimmer
L1—10 turns No. 16 enameled wire wound on 3/8 inch form, spaced 1 inch end to end
R1—47 kΩ, 1/2 W
R2—10 kΩ, 1/2 W
R3—330 Ω, 1/2 W
MIC—Carbon microphone element
S01—Crystal socket

Fig. 24-10. Radio pager.
Fig. 24-11. Electronic siren.
Parts list

SCR1—HEP R1245
D1, D2, D3, D4—HEP R0056
D5, D6—15V, 1.22W Zener, HEP Z0418
C1—0.1 μF

R1—250kΩ, 1/2W, pot
R2—1kΩ, 1/2W
F1—3A, Lafayette 12P29129
Fuse holder—Lafayette 12P23510
LP1—Incandescent up to 150W

Fig. 24-12. Full-wave incandescent light dimmer.

PARTS LIST
D1 GE A15F or equivalent 3A, 50V
D2 1N4000, 1A, 50V
SCR GE C106F1, IR 106F1 or equivalent
R1 2 ohm, 2 watt
R2 1K, ½ watt
R3 1000, ½W
C1 100 μF, 25V electrolytic
Battery 10 to 30 ampere-hour, lead acid (motorcycle or garden tractor battery)
Lamp 1 to 2A, 12V automotive bulb or high intensity lamp bulb
T1: 120V to 12.6V, 2A filament or rectifier transformer
SW1. SPST pushbutton, normally closed
Misc Oversized battery case, line cord, lamp socket to fit

Fig. 24-13. Basic emergency lighting system schematic and parts list.
Fig. 24-14. Automatic light turn-on dusk, off at dawn.
Fig. 24-15. DC lamp chaser.

Parts list
SCR1, SCR2—HEP R1220
UJT1, UJT2—EGC 6400 (Sylvania)
C1, C2—10μF, 25V electrolytic
All resistors 1/2W
R1—18kΩ R2—120Ω R3—100Ω R4—1kΩ R5—18kΩ R6—120Ω R7—100Ω R8—1kΩ
S1—SPST, Lafayette 34P02302V
LP1, LP2, LP3—12V lamps, Lafayette 32P09814V
Lamp holders (3)—Lafayette 32P28004
NOTE: AUTOTRANSFORMER WINDINGS -
N1 - 200 turns No. 32 AWG
N2 - 6 turns No. 32 AWG
N3 - 8 turns No. 20 AWG
(WOUND ON ARNOLD A930167-2 CORE)

Parts List

C1 — 1-mfd, 50-V paper capacitor
C2 — 0.1-mfd, 50-V paper capacitor
C3, C4, C5 — 0.005-mfd, 1000-V disc-ceramic capacitors (delete C5 for single lamp)
Q1 — ETRS-4945 transistor*
R1 — GE No. 47 bulb
R2 — 470-ohm, 1/2-watt resistor
L1, L2 — GE F8T5-CW fluorescent lamps
S1 — SPST toggle switch
S2 — DPST momentary push button switch (if only one lamp is needed, a SPST push button is used)
T1 — Autotransformer — core available from GE*, ETRS-4891. See text for winding details.
Minibox — 12" x 2-1/2" x 2-1/4" (Bud CU-2114-A), or equivalent
Pin Sockets — GE ALF141-33, or equivalent

*Available from General Electric Co., Dept. B, 3800 N. Milwaukee Ave., Chicago, Ill. 60641

Fig. 24-16. Parts list and schematic diagram for the battery-operated fluorescent lamp. (GE)
Fig. 24-17. Lazy man's switch schematic diagram.
PARTS LIST
PARTS FOR FIG. 5-13, PLUS:
R4-R7: 470Ω, ½W
R5: 220Ω, ½W
R6: 10K, ½W
SW2: SPST, NC Pushbutton (same as SW1)
C2: 0.01 μF, 25V
D3: LED
PC1: GE H11C2 or equivalent

Fig. 24-18. Emergency lighting system with latching indicator. The latching indicator can be used to drive a relay coil which could be connected to sensitive equipment.
Fig. 24-19. The simple windspeed indicator spins a disc between an LED and a phototransistor. Four holes in the disc pulse the transistor on and off to fire the one-shot. It maintains a constant pulse duration from the \(Q \) output, charging capacitor \(C2 \) in proportion to the windspeed. This charge drives the meter upscale.

Fig. 24-20. Proportional Speed Controller (NS).
Fig. 24-21. Three tone doorbell.

Fig. 24-22. Bedside light.
Fig. 24-23. Audio "fence" for animals.
Fig. 24-24. AC flasher circuit.
Chapter 25
Games and Toys
Fig. 25-1. Electronic roulette wheel counter decoder logic.

Parts list
IC1—SN7404
IC2, IC3—SN7493
IC4, IC5, IC6—SN74154
R1—180Ω, 1/2W
LED 1 through 38, red, MV5024
Fig. 25-2. Schematic of the digital electronic die.
Fig. 25-3. Two players can test their reaction time with this reflex game. These cross coupled NAND gates make up a common form of latch circuit.
UNLESS OTHERWISE INDICATED:
A. ALL RESISTANCE IN OHMS
B. ALL CAPACITANCE IN mF

<table>
<thead>
<tr>
<th>REF DESIG</th>
<th>5V</th>
<th>GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>14</td>
<td>3, 7</td>
</tr>
<tr>
<td>U2 - U4</td>
<td>14</td>
<td>7</td>
</tr>
</tbody>
</table>
Fig. 25-4. Electronic dice update this ageless game for home entertainment. Multivibrator U1 increments a display module modified to count from 1 to 6, corresponding to the spots on a die. The NAND gate senses a 7 to reset the counter to 1. The final count is determined by the multivibrator discharging capacitor C3.
Fig. 25-5. Each target for the shooting gallery requires a duplicate of circuits related to phototransistor Q1 and LED D1. Only one gun is required.
Chapter 26
Indicator Circuits
Fig. 26-1. Battery-threshold indicator (NS).

$V_{TH} = 6V$

$I_{D1} = 5 \text{ mA}$
Fig. 26-2. Visible voltage indicator (NS).
Fig. 26-3. Battery-level indicator (NS).
Chapter 27
Integrators
Fig. 27-1. High-speed integrator (M).
Chapter 28
Interface Circuits
Fig. 28-1. Process control interface (NS).

Fig. 28-2. Synchronous handshake (MM74C922) (NS).
Outputs are enabled when valid entry is made and go into TRI-STATE when key is released.

Fig. 28-3. Synchronous data entry onto bus (MM74C922) (NS).

Fig. 28-4. Asynchronous data entry onto bus (MM74C922) (NS).
Fig. 28-5. ECL to TTL interface (S).

Fig. 28-6. TTL to ECL interface (S).
Chapter 29
Inverters
Fig. 29-1. DC-to-AC inverter.
Fig. 29-2. Boosted current polarity inverter (NS).
Chapter 30
Logarithmic Amplifiers
Fig. 30-1. Logarithmic amplifier using an MC1539G op amp (M).
Fig. 30-2. Logarithmic amplifier using an MC1556 op amp. The 10K pot is an offset adjustment (M).

Fig. 30-3. Logarithmic amplifier using an MC1556 op amp (M).
Chapter 31
Logic Circuits,
Counters and Clocks
Fig. 31-1. MOS clock driver (NS).

<table>
<thead>
<tr>
<th>C</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 pF</td>
<td>5 MHz</td>
</tr>
<tr>
<td>1600 pF</td>
<td>1 MHz</td>
</tr>
<tr>
<td>0.018 µF</td>
<td>100 KHz</td>
</tr>
<tr>
<td>0.18 µF</td>
<td>10 KHz</td>
</tr>
</tbody>
</table>

Fig. 31-2. The simple TTL clock generator circuit shown provides a clock satisfactory for most simple TTL systems and it always starts oscillating without coaxing. This circuit requires only ½ of a hex inverter package and three passive components—two resistors and a capacitor.
For \(V_{O1} = V_{O2} = \frac{V^+}{2} \), \(\frac{R_3}{R_2} = \frac{V^+ - 2\phi}{2(V^+ - \phi)} \), \(\frac{R_6}{R_5} = \frac{V^+ - 2\phi}{\phi} \) where \(\phi = 0.6V \\

\[A_V = \frac{R_3}{R_1} \left(\frac{R_6}{R_4} + 1 \right) \]

- 1 MHz—3 dB bandwidth with gain of 10 and 0 dbm into 600Ω
- 0.3% distortion at full bandwidth; reduced to 0.05% with bandwidth of 10 kHz
- Will drive \(C_L = 1500 \text{ pF} \) with no additional compensation, ±0.01 \(\mu \text{F} \) with \(C_{\text{comp}} = 180 \text{ pF} \)
- 70 dB signal to noise ratio at 0 dbm into 600Ω, 10 kHz bandwidth

Fig. 31-3. Balanced line driver (NS).
Fig. 31-4. Decimal counting unit. The input stage (left) converts negative-going pulses into uniform signals. Counting decades are shown at right. The value of R1 is adjusted to produce staircase whose voltage value at the source of the output FET represents the count.
Fig. 31-5. A resynchronizer using a 9310 (or 9316) as four D-input flip flops is shown. In this circuit the PE input is grounded, and the resynchronizing input is applied to the CP input. In most cases, the 9300 universal shift register is preferable for this function.

Fig. 31-6. Buffering circuit isolates frequency counter from signal source, offers high-impedance input, relatively low-impedance output. The value of the series input resistor is 100K; R3 is 1800 ohms.
Fig. 31-7. Synchronous divide-by-2 up counter.

Fig. 31-8. Frequency-standard oscillator and counter circuitry with timing diagrams.
Fig. 31-9. Synchronous divide-by-5 up counter.

Fig. 31-10. Synchronous divide-by-6 up counter.
Fig. 31-11. Synchronous divide-by-7 up counter.

Fig. 31-12. Synchronous divide-by-8 up counter.
Fig. 31-13. Synchronous divide-by-9 up counter.

Fig. 31-14. Synchronous divide-by-10 up counter.
Fig. 31-15. Three-stage oscillating ring counter with indicating shift register plus into household outlet; flash sequence: 2-12-12-32-12-12-3. (The 1M resistors should be matched fairly closely.)

Fig. 31-16. Frequency standard wiring diagram.
Fig. 31-17. Schematic of the digital interlaced sync generator. R2 is 5.6K, ½W, 5%; potentiometers are miniature and capacitors are Mylar.
Fig. 31-18. DVM adapter for a frequency counter. This circuit consists of 200K Ω/V input low-pass active filter stage, a polarity detector, and automatic switcher/indicator, and a voltage-to-frequency converter. The output frequency is adjusted so that 50V will give a frequency of 5000 out. The three 25K pots are used for offset balancing. Any counter capable of readout to Hz is fine.
Fig. 31-19. One-shot circuit is easily built from 914 IC by adding single capacitor and external resistor. If 3V supply is used for IC, and 22V supply to drive external timing resistor, duration of output pulse will be almost exactly \(\frac{1}{6} \) the RC time constant, with \(R \) in ohms and \(C \) in farads. Maximum resistance usable for \(R \) is 33K to permit turn-on current to flow. Capacitance \(C \), however, may be any value desired to achieve required output pulsewidth.

Fig. 31-20. This rather complex arrangement of ICs is a frequency comparator and phase detector. The unknown frequency is fed into the TACH input and the standard to which it is to be compared goes to the STD. OUT 1 and OUT 2 are of opposite polarity. Type 915 (Q2) is same as 914 but has 3-input gates rather than 2-input elements.
Fig. 31-21. Divide-by-N circuit.
Fig. 31-22. Minor modifications to one-shot circuit, including substitution of a crystal for the timing capacitor and insertion of a capacitor in the dc feedback loop, turn it into a crystal-controlled oscillator which may be used for a frequency standard. Output is rich in harmonics, and this circuit is not recommended for transmitter use for that reason.

Fig. 31-23. Voltage-controlled oscillator can be varied over nearly 10-to-1 frequency range simply by varying control voltage. This circuit may be used as part of phase-locked detector.
Fig. 31-24. Programmable divider (+N).
Fig. 31-25. Synchronous divide-by-4 up counter.

Fig. 31-26. Frequency counter input: gating, strobing, and resetting. The sensitivity is set by the ratio of the 220 to 2K resistors.
Fig. 3-27. Time base schematic diagram.
Fig 31-28. PLL makes fine frequency multiplier or divider. For this application, audio output connections are ignored and the VCO output is used instead. If input is single-ended, one of the two push-pull input leads should be bypassed to ground as shown by dotted lines. Circuit will multiply up to 10 times, and divide input frequency by 3, 5, 7 or 9. C1 and fine-tuning adjustment must be set for operation near desired output frequency. When input is applied, VCO will look to exact multiple or odd submultiple of input if it is within locking range and of adequate strength.

Fig. 31-29. A nonlocking scanner can be made easily by using an Archer dual flasher in conjunction with an external switching circuit.
Fig. 31-30. Clock schematic diagram.
Fig. 31-31. Controller for resistive loads. The RCA 2N5444 triac can be used for load currents up to 40A. The RCA 40668 triac will switch intermediate loads the 40526 will handle lighter loads and those which are somewhat inductive.

Fig. 31-32. Differential comparator circuit. The load is switched on when the voltage difference between Vs and Vr becomes less than 50 μV. Note the jumper between terminals 7 and 12, which deactivates the anti-RFI feature.
Fig. 31-33. Two-channel search-lock for FM receivers. The switch is mounted on the control head; everything else may be mounted inside the radio cabinet.
Fig. 31-34. Remote or digital control amplifier.

C2 - 50 to 400 pF (MILLER 160B)
Q1 - 2N3646, 2N708 or HEP 50
Q2 - HEP 802, MPF 102 (MOTOROLA)

Fig. 31-35. A 200 kHz crystal standard for counter time base.
Fig. 31-36. Multiplier, mixer, squaring amplifier schematic diagram.
Fig. 31-37. SSTV frequency standard. This simple circuit provides the need pulses for slow-scan TV cameras, flying-spot scanners, and pattern generators.

Fig. 31-38. Low-speed counter, scope or audio dc input level and polarity switcher. This circuit will change the level of the input signal by means of the pot. The polarity (rise and fall) may be inverted by means of the switch.
Fig. 31-39. Clock generates an accurate timing signal of 1, 0.1, 0.01, or 0.001 second.
Fig. 31-40. Counter operates up to 10 MHz with 0.001% tolerance of error. Output is binary, for bank panel lamps.

Fig. 31-41. Sample logic board flip-flop with pilot light display.
Fig. 31-42. Using flip-flops to divide by various amounts.
This pulse generator is a variable clock testing digital IC systems, especially at low clocking rates. Due to the wide range supply voltage allowed for the SE/NE555 it can be used with RTL, DTL, TTL, and HiNii. It uses anything between +4 and +15V. This circuit comprises three 555 timers. The first 555 is connected as an astable clock. The leading edge of the negative output pulse is used to trigger the second 555. This delivers a positive-going pulse used as the positive out. The third 555 is connected as an inverter to generate the negative-going output pulse. This pulse appears about 4 μsec after the positive pulse has started. The rise and fall times are about 100 nsec. With a load of 1K between output and +V, the current drawn by the complete circuit is 17 mA at 5V, and 52 mA at 15V. Table shows the capacitor values and the corresponding PRI and PL ranges achieved. Sketches above show 3 applications.
Fig. 31-44. Programmable counter counts in modulo 2^n, where n is the programmable input. Input n drives the selected output so low that when a parallel load occurs, all highs are written into the register except at the stage represented by the address n. At condition 000011111111, the terminal count of the last stage goes high. After 14 additional pulses bring the total to 2^n-1, the three remaining inputs to the 9004 gate are high, and the next clock pulse reloads the counter to its original conditions.
Fig. 31-45. Counter flip-flop, lamp driver, and feedback network.
Fig. 31-46. This edge detector circuit generates a negative-going pulse on output A for each low-to-high transition of the input. The pulse width is adjustable by varying the Miller capacitance. A nonadjustable short pulse (= 20 ns) on the low-to-high transition of the input can be generated by replacing the transistor inverter stage with the unused fourth NAND gate.
Fig. 31-47. Pulse shaper.

Fig. 31-48. Cheaper differential amplifier.
Fig. 31-49. This circuit stores 9 digits bit-serially in a 36-bit shift register comprised of two 9328 dual 8-bit shift registers and 9300 4-bit universal shift register incrementing or decrementing with an exclusive-OR. This counter offers very economical display multiplexing and is shown driving 7-segment LED displays. This circuit operates as a crystal-controlled stopwatch, displaying milliseconds to hours. The time counter is a 36-bit (9-digit) bit/serial incrementer controlled by a 3.6 MHz crystal oscillator and time base so that the 10-second and 10-minute digits are counted modulo 6. A second set of shift registers store display data independently when the stop contact is activated. The contents of the storage register are strobed every four clock pulses into a 93L00 feeding 9307 7-segment decoder. This decoder, through current-limited buffers, drives the anodes of the 8-digit LED display matrix. Since this counter requires 36 clock pulses to increment the least significant digit the shift frequency is 360 kHz, driven from a 3.6 MHz oscillator through a 9305 decade counter. In this case, the low count rate inherent to serial increments is advantageous, resulting in a shorter divide chain for the time base.
Fig. 31-50. One-pulse-per-second generator.
Fig. 31-51. Counter power supply. Connections are made via the points numbered 1-5.
Fig. 31-52. Schematic of frequency counter. Note: C3—C26 are not shown. These are 0.01 disc ceramics connected directly from Vcc to ground at each IN.
Fig. 31-53. Detailed block diagram of frequency counter. The 7490 identified by * should be selected for > 20 MHz switching speed.
Fig. 31-54. Counter "front end" contains preamplifier as well as prescaler.
Fig. 31-55. 741 used as high-speed comparator. The output of this circuit varies from +12 to +2 volts and back with extremely fast rise and fall times.

Fig. 31-56. TTL one-shot used to develop wider pulses. Chart shows values for C and R for various output pulse widths.
Fig. 31-57. Digital clock uses 19 inexpensive ICs.
NOTE
SAME RESISTOR NETWORK USED WITH ALL 7 SEGMENT DISPLAYS
Chapter 32
Math Function Circuits
Low-Cost Accurate Square Root Circuit

\[i_{\text{OUT}} = 10^{-5} \cdot \sqrt{10} V_{\text{IN}} \]

Fig. 32-1. MOS clock driver (NS).
Low Cost Accurate Squaring Circuit

\[I_{OUT} = 10^{-6} (V_{IN})^2 \]

Fig. 32-2. Balanced line driver (NS).
CIRCUIT EQUATIONS

\[V_1 = (V_{\text{REF}})(D) \]
\[V_2 = +(V_{\text{REF}})(D^2) \]
\[V_n = -(V_{\text{REF}})(D^n), \text{ } n \text{ an odd integer} \]
\[V_n = +(V_{\text{REF}})(D^n), \text{ } n \text{ an even integer} \]

Fig. 32-3. Power generation circuit using n AD7523 8-bit multiplying D/A converters (AD).
\[V_{OUT} = -\frac{V_{IN}}{D} \]

\[A_V = \frac{V_{OUT}}{V_{IN}} = -\frac{1}{D} \]

where: \(A_V \) = Voltage Gain

and where:

\[D = \frac{DB7}{2^7} + \frac{DB6}{2^6} + \ldots + \frac{DB0}{2^0} \]

\(DB_N = 1 \) or 0

EXAMPLES

\[D = 00000000, \quad A_V = -A_{OL} \text{ (OP AMP)} \]

\[D = 00000001, \quad A_V = -256 \]

\[D = 10000000, \quad A_V = -2 \]

\[D = 11111111, \quad A_V = -\frac{256}{255} \]

Fig. 32-4. Divider circuit with digitally controlled gain (AD).

Fig. 32-5. Square rooter circuit using the 435 multiplier/divider chip (AD).
$$E_0 = \sin x \approx x - \frac{x^2.827}{6.28}$$

Fig. 32-6. Sine function from the 4301 multifunction chip (BB).

Fig. 32-7. Arc tangent function from the 4301 multifunction chip (BB).
Fig. 32-8. Multiplier with op amp level shift (M).
Fig. 32-9. Multiplier circuit using an MC1595 (M).

\[V_o = KV_x V_y \]

\[V_x - \text{Offset Adjust} \]

\[15 \text{ k} \]

\[15 \text{ k} \]

\[1 \mu F / 25 \text{ V} \]

\[1 \mu F / 50 \text{ V} \]

\[500 \Omega \]

\[11 \text{ k} \]

\[11 \text{ k} \]

\[9.1 \text{ k} \]

\[1 \text{ k} \]

\[10 \text{ k} \]

\[10 \text{ k} \]

\[20 \text{ k} \]

\[20 \text{ k} \]

\[\text{Gain Adj.} \]

\[-15 \text{ V} \]

\[V_x \]

\[V_x \text{os} \]

\[V_y \]

\[V_y \text{os} \]

\[+32 \text{ V} \]

\[\text{V}_y - \text{Offset Adj.} \]

\[-10 \text{ V} \leq V_x \leq +10 \text{ V} \]

\[-10 \text{ V} \leq V_y < +10 \text{ V} \]

\[\frac{1}{10} \]
Fig. 32-10. Multiplier with discrete level shift (M).

-10 V ≤ V_x ≤ +10 V
-10 V ≤ V_y ≤ +10 V

Q_1, Q_3 - 2N930A
Q_2 - 2N2905A

*Or MD6100
Fig. 32-11. Analog multiplier using an ECG947 dual operational amplifier. The ECG947 is short-circuit protected and requires no external components for frequency compensation (GTE).

Fig. 32-12. Difference-of-squares circuit. This circuit computes the difference of the squares of two input signals. It is useful in vector computations and in weighing the difference of two magnitudes to emphasize the greater nonlinearity. If can also be used to determine absolute value if A is the input, B is connected to Eo through a diode and both Z terminals are grounded (AD).
Fig. 32-13. Percent of deviation ratio computer (AD).

Fig. 32-14. One-quadrant multiplication using a DAC-IC 10BC D/A converter and AM-452 op amp. See coding table. With V_{IN} connected to pin 16 the input impedance is low; with it connected to pin 15 the input impedance is high. The range is then 0 to -10 volts (DS).
Fig. 32-15. Divider with digitally controlled gain (AD).

\[V_{OUT} = \frac{-V_{IN}}{D} \]

where:

\[D = \frac{\text{BIT 1}}{2^1} + \frac{\text{BIT 2}}{2^2} + \ldots + \frac{\text{BIT 10}}{2^{10}} \]

\[0 < D < \frac{1023}{1024} \]

Fig. 32-16. Vector computer using one AD531 multiplier/divider and two AD741 op amps. The circuit derives the square root of the sum of the squares (AD).
Fig. 32-17. Cosine function from the 4301 multifunction chip (BB).

\[E_O = \cos x = 1 + 0.2325 x \cdot \frac{x}{1.504} \cdot \frac{1}{1.445} \]

Fig. 32-18. True RMS circuit using one AD531 multiplier/divider and two AD741 op amps. The AD531 is combined with a simple filter to obtain the true RMS value of an AC input signal. By scaling \(V_{\text{out}} = 10 \) volts DC for a ±10-volt DC input this circuit can give direct RMS readings for 100 hertz to 100 kilohertz sine waves from 0.2 volt to 7.0 volts peak (AD).
\[v_0 = \sqrt{v_1^2 + v_2^2} = \frac{v_1^2}{v_0 - v_2} - v_2 \]

Fig. 32-19. Vector magnitude function from the 4301 multifunction chip (BB).

Fig. 32-20. Divider circuit using an AD532 multiplier/divider chip. The AD532 is available as a 10-pin TO-100 or as a 14-pin DIP (AD).
INPUT B

OUTPUT

\[\text{OUTPUT} = \frac{100 \text{V}}{A - B} \]

(1% PER VOLT)

OTHER SCALES, FROM 10% PER VOLT TO 0.1% PER VOLT CAN BE OBTAINED BY ALTERING THE FEEDBACK RATIO.

Fig. 32-21. Percentage computer using an AD534 multiplier/divider chip (AD).

Fig. 32-22. Divider circuit using the 433 multiplier/divider chip (AD).
Fig. 32-23. Divider circuit using the 435 multiplier/divider chip (AD).

Fig. 32-24. Two-quadrant multiplication with AD7520 in unipolar binary operation. The Intersil AD7520 is an 18-pin multiplying D/A converter. To adjust the zero offset connect all digital input to ground, and adjust the zero trimmer on the op amp for OV ± 1 mV at Vout. To adjust for the gain connect all digital inputs of the AD7520 to VDD. Monitor Vout for a –VREF (1 – 2^–n) reading, where n is equal to 10. To decrease Vout connect a series resistor, 0 to 500 ohms, between the reference voltage and pin 15. To increase Vout connect a series resistor, 0 to 500 ohms, in the IOUT1 amplifier feedback loop (I) (AD).
Fig. 32-25. Square rooter circuit using the 434 multiplier/divider chip (AD).

Fig. 32-26. Square rooter using the 433 multiplier/divider chip (AD).
Fig. 32-27. Multiplier circuit using the 435 multiplier/divider chip (AD).

Fig. 32-28. Square root of the sum of the squares circuit. This circuit performs vector computations (AD).
\[V_C = \sqrt{V_A^2 + V_B^2} \]
\[V_C^2 = V_A^2 + V_B^2 \]
\[V_A^2 = V_C^2 - V_B^2 \]
\[V_A^2 = (V_C - V_B)(V_C + V_B) \]

\[\frac{V_A^2}{V_C + V_B} = (V_C - V_B) \]
\[V_C = \frac{V_A^2}{V_C + V_B} + V_B \]

Fig. 32-29. Vector computation circuit for \(V_C^2 = V_A^2 + V_B^2 \) using the 433 multiplier/divider and two AD741 op amps (AD).

Fig. 32-30. Vector computation circuit for \(n \) variables using 434 multiplier/dividers and two AD741 op amps (AD).
Chapter 33
Miscellaneous Circuits
Typical Operating Conditions

<table>
<thead>
<tr>
<th>V^+</th>
<th>NOMINAL FLASH Hz</th>
<th>C_T</th>
<th>R_S</th>
<th>R_{FB}</th>
<th>$V^+_R\text{ANGE}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6V</td>
<td>2</td>
<td>400(\mu F)</td>
<td>1k</td>
<td>1.5k</td>
<td>5–25V</td>
</tr>
<tr>
<td>15V</td>
<td>2</td>
<td>180(\mu F)</td>
<td>3.9k</td>
<td>1k</td>
<td>13–50V</td>
</tr>
<tr>
<td>100V</td>
<td>1.7</td>
<td>180(\mu F)</td>
<td>43k</td>
<td>1W</td>
<td>85–200V</td>
</tr>
</tbody>
</table>

Fig. 33-1. Warning flasher High-Voltage powered using NSL 5027 (NS).
Note: LM3809, capacitor, and LED are installed in a white translucent cap on the flashlight's back end. Only one contact strip, in addition to the case connection, is needed for flasher power. Drawing current through the bulb simplifies wiring and causes negligible loss since bulb resistance cold is typically less than 2Ω.

Fig. 33-2. Flashlight finder (NS).
Fig. 33-3. Incandescent bulb flasher (NS).

Fig. 33-6. 20-Segment meter with mode Switch.

The exact wiring arrangement of this schematic shows the need for Mode Select (pin 9) to sense the V voltage exactly as it appears on pin 3.

*Program LEDs to 10 mA
Fig. 33-5. Zero-center meter, 20-segment (NS).

* This application illustrates that the LED supply needs practically no filtering.

Calibration: With a precision meter, insert between pins 4 and 6 adjust R1 for voltage VD of 1.20V. Apply 4.5V to pin 5 and adjust R4 until LED No. 5 just lights. The adjustments are not interacting.

Fig. 33-6. Expanded scale meter, dot or bar (NS).
Fig. 33-7. Intercom (NS).

Fig. 3-18. Audio mixer (NS).
Fig. 33-9. Siren (NS).
Fig. 33-10. Tape recorder (NS).
Fig. 33.12. Two-phase motor drive (NS).
Fig. 33-13. Tachometer (NS).
Fig. 33-14. Ramp and hold (NS).

*Absorbs inductive kickback of relay and protects IC from severe voltage transients on V++ line.

Note: Do Not Ground Strobe Pin

Fig. 33-15. Relay driver with strobe.
Fig. 33-16. Floating voltage-controlled resistor (NS).
Fig. 33-17. Two-way intercom (NS).

Fig. 33-18. Phase-locked loop (NS).
Fig. 33-19. A 2-state siren (NS).

\[f_{\text{AUDIO}} = \frac{1}{1.4 \, R1C1} \]
\[= 190 \, \text{Hz} \]

\[f_{\text{SWITCH}} = \frac{1}{1.4 \, R2C2} \]
\[= 1.9 \, \text{Hz} \]
Fig. 33-20. Low-drift ramp and hold circuit (NS).
Fig. 33-21. Phase-locked loop.
Fig. 33-22. Single-cell voltage monitor (NS).

Fig. 33-23. A 1.0 Amp lamp flasher (NS).
Fig. 33-24. Transmitter for bridge sensor (NS).
Fig. 33-25. Tone decoder with relay output (NS).
Fig. 33-26. Differential light detector (RCA).

Fig. 33-27. Remote-control transmitter.
Fig. 33-29. DC overload circuit breaker.
Fig. 33-30. AC overload circuit breaker.
Fig. 33-31. Frequency differencing tachometer (NS).

Fig. 33-32. Frequency averaging tachometer (NS).
Occasionally a flasher circuit will fail to oscillate due to a LED defect that may be missed because it only reduces light output 10% or so. Such LEDs can be identified by a large increase in conduction between 0.9V and 1.2V.

Fig. 33-33. 1.5V flasher (NS).
Fig. 33-34. Emergency lantern/flasher (NS).

Note: Nominal flash rate: 1.5 Hz.

Fig. 33-35. Variable flasher (NS).

Note: Flash rate: 0–20 Hz.
Fig. 33-36. 2-tone siren (NS).

\[f_{SWITCH} = \frac{1}{1.4 \times R1 \times C1} \]
\[= 1.9 \text{ Hz} \]
Fig. 33-37. Thermocouple transmitter (NS).
1.5V

Note: High efficiency, 4 mA drain.

Note: Continuous appearing light obtained by supplying short, high current, pulses (2 kHz) to LEDs with higher than battery voltage available.

Fig. 33-39. LED booster (NS).
Fig. 33-40. Double-ended voltage monitor (NS).
Chapter 34
Multiplexers
Fig. 34-1. Multiplexer (NS).

Fig. 34-2. Two-channel multiplexer and decoder using OTAs (RCA).
Fig. 34-3. Current mode multiplexer (NS).
Fig. 34-4. Multiplexer/Mixer (PM).
Chapter 35
Multivibrators
Fig. 35-1. 100 kHz free running multivibrator.

Fig. 35-2. One-shot multivibrator (NS).
Fig. 35-3. Bi-Stable Multivibrator.

Fig. 35-4. One-shot multivibrator (NS).
Fig. 35-5. Bi-stable multivibrator (NS).
Chapter 36
Music-Related Circuits
Fig. 36-1. Digital musical notes.

Parts list
T1—HEP S0014
T2—HEP S0019
IC1, IC2—HEP C2004P
IC3—MC789P
C1, C2—10μF, 6V electrolytic
C3—0.02μF
R1—10kΩ, linear pot, 1W
R2—6.8kΩ, 1/2W
R3—3.9kΩ, 1/2W
R4, R5, R6, R7—100kΩ 1/2W
R8, R9, R10, R11—250kΩ
Linear pot, 1W
R12—390Ω, 1/2W
R13—22kΩ, 1/2W
R14—500Ω, linear taper pot, 1W
R15—47Ω, 1/2W
S1, S2, S3, S4—SPST switch
(S Optional for R8, R9, R10, R11)
Lafayette 34P02302V
S5, S6—SPDT switch Lafayette 99P64164V
J1—RCA type phono jack

Digital musical notes.

477
Fig. 36-2. The basic visual metronome is enclosed by the dashed-in area at the upper left. If another indication is desired for every second through sixth beat, the remaining circuits must be added, except for the audio operation. It can be added with either configuration.
D2
GREEN MEASURE INDICATOR
UNLESS OTHERWISE SPECIFIED
A ALL RESISTANCE IN OHMS
B ALL CAPACITANCE IN \(\mu \)F

<table>
<thead>
<tr>
<th>REF DESIG</th>
<th>+5V</th>
<th>GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>U2</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>U3</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>U4, U5</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>R1, R3</td>
<td>2</td>
<td>100 000 OHMS, 1/8 WATT</td>
</tr>
<tr>
<td>R2</td>
<td>2</td>
<td>2 MEGOHM POTENTIOMETER</td>
</tr>
<tr>
<td>R4, R5</td>
<td>2</td>
<td>1000 OHMS, 1/8 WATT</td>
</tr>
<tr>
<td>R6</td>
<td>1</td>
<td>470 OHMS, 1/8 WATT</td>
</tr>
<tr>
<td>S1</td>
<td>1</td>
<td>6 POSITION, 2 POLE, WITH KNOB</td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>555 TIMER</td>
</tr>
<tr>
<td>U2</td>
<td>1</td>
<td>7404 HEX INVERTERS</td>
</tr>
<tr>
<td>U3</td>
<td>1</td>
<td>74192 BCD/DECADE COUNTER</td>
</tr>
<tr>
<td>U4, U5</td>
<td>2</td>
<td>7400 OUAD, 2-INPUT NAND</td>
</tr>
</tbody>
</table>

*FOR AUDIO OPTION ONLY
ON HEAT SINKS, THESE UNITS HAVE INTERNAL ISOLATION FOR TABS

Fig. 36-3. Schematic of the high performance color organ.
Chapter 37
Op Amp Circuits
Fig. 37-1. Improved op amp (NS).

Fig. 37-2. Low-frequency op amp (NS).
Fig. 37-3. Low-frequency op amp with offset adjustment (NS).

Fig. 37-4. Low-drift op amp using the LM121A as a preamplifier (NS).
Fig. 37-6. Gated amplifier (M).

Fig. 37-7. High-impedance input, high-current output voltage follower (M).
Fig. 37-8. High-slew-rate power amplifier using an ECG941/941D/941M operational amplifier (GTE).

Fig. 37-9. Frequency compensation circuit using an ECG915 operational amplifier. See table for component values. Supply voltage is ±15 volts (GTE).
Fig. 37-10. High-impedance high-gain inverting amplifier. Typical supply voltages are +15 volts and -15 volts (GTE).

Fig. 37-11. Voltage comparator using an MC1539G op amp (M).
Fig. 37-12. Unity-gain op amp with fast response time (M).

Fig. 37-13. Differential with low-noise output using an MC1539 op amp (M).
Fig. 37-14. Weighted averaging amplifier using half of an ECG947 dual operational amplifier. The ECG947 is short-circuit protected and requires no external components for frequency compensation (GTE).

Fig. 37-15. Differential amplifier using an MC1539 op amp (M).
Fig. 37-16. Inverting amplifier using an ECG941/941D/941M operational amplifier. Typical supply voltage is ±15 volts (GTE).

Fig. 37-17. Feedforward frequency compensation circuit using an AD101A/201A/301A op amp. Typical supply voltage is ±15 volts (AD).
Fig. 37-18. Simple differentiator using an ECG941/941D/941M operational amplifier. Typical supply voltage is ±15 volts (GTE).

Fig. 37-19. Op amp with FET AGC circuit (M).
Gain

<table>
<thead>
<tr>
<th>Gain</th>
<th>R_1</th>
<th>R_2</th>
<th>R_{in}</th>
<th>B.W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1 kΩ</td>
<td>9 kΩ</td>
<td>100 MΩ</td>
<td>100 kHz</td>
</tr>
<tr>
<td>100</td>
<td>100 Ω</td>
<td>99 kΩ</td>
<td>280 MΩ</td>
<td>10 kHz</td>
</tr>
<tr>
<td>1000</td>
<td>100 Ω</td>
<td>99.9 kΩ</td>
<td>80 MΩ</td>
<td>1 kHz</td>
</tr>
</tbody>
</table>

Fig. 37-20. Noninverting amplifier using an ECG941/941D/941M operational amplifier. Typical supply voltage is ±15 volts (GTE).

Fig. 37-21. Unity-gain op amp using an AD5098-pin TO99 (AD).
Voltage Gain = 10^3
Input Offset Voltage Drift = 0.6 μV/°C
Input Offset Current Drift = 2.0 pA/°C

NOTE: PIN 4 CONNECTED TO CASE

Fig. 37-22. Low-drift low-noise amplifier using an ECG941/941D/941M operational amplifier and a μA727B temperature controlled differential amplifier. Typical supply voltage is ±15 volts (GTE).

Fig. 37-23. Op amp with minimum settling time using an AD518 8-pin TO99 (AD).
Fig. 37-24. Unity-gain voltage follower using an ECG941/941D/941M operational amplifier. Typical supply voltage is ±15 volts (GTE).

Fig. 37-25. Voltage follower using an MC1539 op amp with unity-gain compensation (M).
Fig. 37-26. Unity-gain voltage follower using half of an ECG947 dual operational amplifier. The ECG947 is short-circuit protected and requires no external components for frequency compensation (GTE).

Fig. 37-27. Instrumentation amplifier using two AD510 8-pin TO99 op amps. As shown the gain is 10. By adding R5 the gain will increase. For a gain of 10 the frequency response is down 3 dB at 500 kHz. Full output of ±10 volts can be attained up to 1800 hertz (AD).
Fig. 37-28. Op amp with high bandwidth using an AD518 8-pin TO99. Bandwidth is nearly 25 MHz with the feedforward technique shown (AD).

<table>
<thead>
<tr>
<th>GAIN</th>
<th>VALUE OF RG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>1</td>
<td>100 kΩ</td>
</tr>
<tr>
<td>10</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>100</td>
<td>1 kΩ</td>
</tr>
<tr>
<td>1000</td>
<td>100 Ω</td>
</tr>
</tbody>
</table>

Fig. 37-29. Instrument amplifier using an AD521 op amp. Typical supply is ±15 volts (AD).
Fig. 37-30. General-purpose operational amplifier with closed-loop gain greater than 10. Typical supply voltage is ±15 volts (AD).

Fig. 37-31. Noninverting amplifier using half of an ECG947 dual operator amplifier. The ECG947 is short-circuit protected and requires no external components for frequency compensation (GTE).
Fig. 37-32. Voltage follower using an MC1556 op amp (M).

Fig. 37-33. Differential-input composite op amp (BB).
\[
\frac{E_{\text{out}}}{E_{\text{in}}} = \frac{R_2}{R_1} \quad \text{if} \quad |E_{\text{out}}| \leq V_Z + 0.7 \text{ V}
\]

where \(V_Z \) = Zener breakdown voltage

Fig. 37-34. Clipping amplifier using an ECG941/941D/941M operational amplifier. Typical supply voltage is ±15 volts (GTE).

Fig. 37-35. Two pole frequency compensation circuit using an AD101A/201A/301A op amp. Typical supply voltage is ±15 volts (AD).
Fig. 37-36. Fast-settling op amp with gain of -1. For gains larger than -1 use an input resistor valued at 500 ohms or less and pick a feedback resistor for the required gain, i.e., 1K for -1, 1.5K for -3, etc. (DS).

Fig. 37-37. Inverting-only composite op amp (BB).
Fig. 37-38. Unity-gain operational amplifier. With the compensation shown a unity-gain frequency of approximately 10MHz to 12MHz results (AD).

Fig. 37-39. Summing amplifier using an MC1539 op amp (M).
Fig. 37-40. Unity-gain feed forward amplifier using an MC1539 op amp (M).

Fig. 37-41. Single pole frequency compensation circuit using an AD101A/201A/301A op amp. Typical supply voltage is ±15 volts. Voltage gain is 88 dB (AD).
MAXIMUM COMPRESSION EXPANSION RATIO = R/R (10 kΩ > R > 0)

NOTE: DIODES O₁ THROUGH O₄ ARE MATCHED ECG178'S

Fig. 37-42. Compressor/expander amplifiers using an ECG947 dual operational amplifier. The ECG947 is short-circuit protected and requires no external components for frequency compensation (GTE).

Fig. 37-43. Op amp in closed-loop frequency-compensated configuration (M).
Fig. 37-44. Inverting amplifier using half of an ECG947 dual operational amplifier. The ECG947 is short-circuit protected and requires no external components for frequency compensation (GTE).

<table>
<thead>
<tr>
<th>GAIN</th>
<th>R_1</th>
<th>R_2</th>
<th>BW</th>
<th>R_{IN}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 kΩ</td>
<td>10 kΩ</td>
<td>1 MHz</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>10</td>
<td>1 kΩ</td>
<td>10 kΩ</td>
<td>100 kHz</td>
<td>1 kΩ</td>
</tr>
<tr>
<td>100</td>
<td>1 kΩ</td>
<td>100 kΩ</td>
<td>10 kHz</td>
<td>1 kΩ</td>
</tr>
<tr>
<td>1000</td>
<td>100 Ω</td>
<td>100 kΩ</td>
<td>1 kHz</td>
<td>100 Ω</td>
</tr>
</tbody>
</table>

Fig. 37-45. Noninverting op amp using an AD510 8-pin TO99 (AD).
Fig. 37-46. Inverting unity-gain high-slew-rate circuit using an ECG915 operational amplifier (GTE).

Fig. 37-47. Voltage follower using an ECG915 operational amplifier. Output is taken on pin 6 (GTE).
Chapter 38
Oscillators
Fig. 38-1. Free-running square wave oscillator (M).

Fig. 38-2. Phase shift oscillator (NS).
Fig. 38-3. Low-distortion power Wien-bridge oscillator (NS).

Fig. 38-4. A 1-kHz and 10-kHz TTL compatible voltage controlled oscillator (NS).
Connect pin 3 to 2.8V to invert output.

Fig. 38-5. Oscillator with quadrature output (NS).

Fig. 38-6. Single amplifier oscillator (NS).
Fig. 38-7. Triangular/square wave voltage-controlled oscillator (NS).
Fig. 38-8. A 10-Hz to 10-kHz voltage-controlled oscillator (NS).

Fig. 38-9. A two-decade high-frequency voltage-controlled oscillator (NS).
Fig. 38-10. Crystal oscillator (NS).

Fig. 38-11. Crystal-controlled sine wave oscillator (NS).
where: $R_2 = 2R_1$

$\phi = \text{amplifier input voltage} = 0.6V$

$\Delta V = \text{DM7414 hysteresis, typ 1V}$

- 5 MHz operation
- T^2L output

Fig. 38-12. Voltage-controlled oscillator (NS).

Fig. 38-13. Sine wave oscillator (NS).
Fig. 38-14. Linear voltage-controlled oscillator (NS).

Fig. 38-15. Square wave oscillator (NS).
Fig. 38-16. Retriggerable one-shot (NS).
Fig. 38-17. Precision oscillator drive 100 mA loads (NS).

Fig. 38-18. Oscillator with double frequency output (NS).
Fig. 38-19. Ramp/pulse voltage-controlled oscillator (NS).
Fig. 38-20. Sinusoidal voltage-controlled oscillator (NS).
Fig. 38-21. A 1.0-MHz oscillator (NS).

Fig. 38-22. Basic Crystal Oscillator.
Chapter 39
Photo-Activated Circuits
Fig. 39-1. Single-stage, solar-powered radio (W).

Q₁, Q₂ PNP Transistors (IR-TR05 or TR14)
PC₁ Selenium or Silicon Solar Cell (IR-B2M, B3M, or S1M)
T₁ 10,000 Ohm to 2,000 Ohm Interstage Transformer (Stancor TA-35, or equivalent)
L₁ Transistor Loopstick Antenna (J.W. Miller No. 2001, or equivalent)
C₁ 365pf Variable Capacitor (J.W. Miller No. 2111, or equivalent)
R₁ 3,900 Ohm Resistor
R₂ 47 K Ohm Resistor
RD₁ Germanium Diode (IR-1N34A)
Headphones Transistor Socket (IR-SH130 or SH131)
Printed Circuit Board (IR-PCB21 or PCB 3)
PC Connector Path (IR-CS60)
PC Patterns (IR-CZ30, CZ50, CZ71)

Fig. 39-2. Two-stage, solar-powered radio (W).
PARTS LIST
M = Single button carbon microphone, available through surplus outlets
I_T1 = Transformer (Triad T 13X sec.
115V 6.3V 0.6A, pri. 6.3V
Q = PNP transistor (IR-TR-05)
L = Flashlight lamp 112
S = 9 pole single throw switch (Mallory
type 3242 or 744)
B_1 = 7.5V battery (Eveready 717, Burgess
5540, or equivalent)
B_2 = 22.5V battery (Burgess V15 or equivalent)
B_3 = Size D flashlight cell

Fig. 39-3. Light-beam transmitter (W).

PARTS LIST
PC = Photocell (IR-B2M)
Q1 = Q2 = PNP Transistor (IR-TR-05)
P = Headphones (see text)
SW1 = SPST switch
R = 330 000 ohm 1/2 watt resistor
B = 2.5V battery (Burgess U15)
T = Stancor A-3250 Triad-T 23 or Thordarson T22590

Fig. 39-4. Light-beam receiver (W).
Fig. 39-5. Light controllers using silicon photo cells (NS).

*Lamp brightness increases until $i_l = 5V/R1$ (i_l can be set as low as 1 mA).
†Necessary only if raw supply filter capacitor is more than 2" from LM320MP.
Fig. 39-6. Photo-driven pulse stretcher (M).

Fig. 39-7. Light-relay-operated SCR alarm circuit (M).
Fig. 39-8. Light-operated SCR alarm using a sensitive gate SCR (M).

<table>
<thead>
<tr>
<th>TRUTH TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1, Q2</td>
</tr>
<tr>
<td>Q1, Q2</td>
</tr>
<tr>
<td>Q1, Q2</td>
</tr>
<tr>
<td>Q1, Q2</td>
</tr>
</tbody>
</table>

Fig. 39-9. Photo-activated logic driver (M).
Fig. 39-10. Photo-activated logic driver (M).

Fig. 39-11. Photo-activated logic driver (M).
Fig. 39-12. Light-operated 6 kV series switch for high-voltage crowbar circuits or high-voltage pulse-forming networks (M).
Q +10 V
V OUTPUT

<table>
<thead>
<tr>
<th>Q1, Q2</th>
<th>OUTPUT = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1, $\overline{Q2}$</td>
<td>OUTPUT = 1</td>
</tr>
<tr>
<td>$\overline{Q1}$, Q2</td>
<td>OUTPUT = 1</td>
</tr>
<tr>
<td>$\overline{Q1}$, $\overline{Q2}$</td>
<td>OUTPUT = 1</td>
</tr>
</tbody>
</table>

Fig. 39-13. Photo-activated logic driver (M).

$+10\text{ V}$

"ENERGIZED"

Q1 MRD300

<table>
<thead>
<tr>
<th>C1</th>
<th>0.1 μF</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1.5 k</td>
</tr>
</tbody>
</table>

SIGMA 11F-2300-GSIL

Q2 MPS3394

Fig. 39-14. Light-operated relay. The phototransistor can be activated by a flashlight (M).
Fig. 39-15. Frequency-sensitive photo-activated alarm (M).
Chapter 40
Power Amplifiers
Fig. 40-1. Power amplifier (NS).

Fig. 40-2. Switching power amplifier (NS).
Fig. 40-3. Switching power amplifier (NS).

Fig. 40-4. A 12.5-watt wideband power amplifier (NS).
Fig. 40-5. A 2-channel power amplifier with control circuits (NS).
Chapter 41
Power-Controlling Circuits
Fig. 41-1. Electric appliance power control (NS).
Fig. 41-2. Triac control circuit employing an ECG776 zero voltage switch with current boost utilizing an AC supply. The circuit is for applications requiring gate currents greater than 50 mA. Select the triac from the ECG5600 series for the particular application (GTE).

Fig. 41-3. Remote control for lamp or appliance using a reed switch and coil. The circuit will handle up to 500 watts (GTE).

Parts List

- **Triac** — GE-X12
- **F1** — 5-amp fuse
- **L1** — 1000 turns of No. 36 enameled copper wire on 1/4" diam. x 2" coil form (this form supplied with reed switch)
- **R1** — 100-ohm, 1/2-watt resistor
- **S1** — GE-X7 reed switch (includes coil form and bias magnet)

- **Receptacle** — Amphenol type 61F socket, or equivalent
- **Misc.** — Line cord, fuse holder, 9-volt transistor battery and clip, grommet, and heat sink.
- **S2** — DPDT switch with center OFF position (spring loaded or telephone type optional)
Fig. 41-4. RMS closed-loop voltage compensator (regulator). This circuit provides an output of 90 ± 2 volts RMS at 600 watts for an input of 105 to 260 volts (M).
Fig. 41-5. Remote control for lamp or appliance using a filament transformer. The circuit can handle up to 500 watts. R1 is adjusted for the highest resistance that will not trigger the triac with S1 open (GTE).

Fig. 41-6. Motor control circuitry using 3650 optical isolation amplifiers (BB).
Fig. 41-7. RMS regulator for a DC power supply using a triac, phototransistor and UJT (M).
Parts List

C1 — 0.5-mfd, 200-volt capacitor
CR1 thru CR5 — GE-504A rectifier diode
F1 — 1/2-amp fuse and holder
J1 — Output jack
P1 — Output plug to track connections
Q1 — G-E Type 2N2160 unijunction transistor
R1 — 50000-ohm, 2-watt potentiometer with SPST switch
R2 — 10000-ohm, 2-watt potentiometer
R3 — 1500-ohm, 1/2-watt resistor
R4 — 470-ohm, 1/2-watt resistor
R5 — 100-ohm, 1/2-watt resistor
R6 — 10000-ohm, 1/2-watt resistor
R7 — 5-ohm, 20-watt resistor or two 10-ohm, 10-watt resistors in parallel
S1 — DPDT switch
S2 — SPST switch (on R1)
SCR1 — GE-X1 silicon controlled rectifier
T1 — Transformer: primary, 120 volts a-c; secondary, 25 volts a-c (Stancor P-6469, or equivalent)
Minibox — Aluminum, 6” x 5” x 4”

Fig. 41-8. SCR model railroading control, Bridge circuit CR1 through CR4 supplies pulsating DC to firing circuit Q1, R1 through R5 and C1, which phase controls, SCR1. The SCR is in series with the train power and thereby controls the amount of current it receives (GE).

Fig. 41-9. Line-voltage compensation circuit using UJT trigger for a thyristor gate (M).
Fig. 41-10. Time-dependent light dimmer. The circuit allows bright lights to slowly fade over a period of 15 to 20 minutes and permits loads up to 500 watts (GE).

Fig. 41-11. Triac temperature-sensitive heater control. This circuit can be modified as shown to control a motor with a constant load. As shown the circuit is for heating applications but can be used for cooling by interchanging R7 and R2. (M.)
Fig. 41-12. RMS open-loop voltage compensator (regulator) for application requiring large conduction angles. It provides an output 141 ±2 volts RMS at 500 watts for an input of 150 to 182 volts RMS (M).
NOTE: Circuit supplies 25 mA drive to gate of triac at \(V_{\text{in}} = 25 \text{ V} \) and \(T_A \leq 70^\circ \text{C} \).

<table>
<thead>
<tr>
<th>TRIAC</th>
<th>(I_{\text{GT}})</th>
<th>(R2)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 mA</td>
<td>2400</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>30 mA</td>
<td>1200</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>50 mA</td>
<td>800</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Fig. 41-13. Logic to inductive load interface using an MOC3011 optically coupled triac driver (M).

Fig. 41-14. Triac static motor-starting switch for 0.5 HP 115- volt AC single-phase induction (M).

Parts List

- **C1** - 5.0-mfd, 10-volt miniature electrolytic capacitor
- **CR1** - GE-504A rectifier diode, or 1N5059, or equivalent
- **R1** - 5-ohm, 5-watt resistor
- **R2** - 47,000-ohm, 1/2-watt resistor
- **R3** - 22,000-ohm, 1/2-watt resistor
- **R4** - 1000-ohm, 1/2-watt resistor
- **R5** - 10,000-ohm, 1/2-watt resistor
- **R6** - 220,000-ohm, 1/2-watt resistor
- **R7** - 100,000-ohm, 1/2-watt resistor
- **R8** - 47,000-ohm, 1/2-watt resistor
- **SCR-GEMR-5**
- **Line Cord**
- **Touch Switch** - see text
- **Minibox** - 5" x 2-1/2" x 2-1/2"; Bud CR-2104A, or equivalent

Q1 - GE-X19 phototransistor
Q2 - GE-10 or 2N5172 transistor

Fig. 41-15. Touch switch for loads up to 180 watts. This circuit is good for turning on and off lights, TVs, stereos, etc. Q1 is a phototransistor (GE).
Triac Power Circuit Parts List

<table>
<thead>
<tr>
<th>Voltage</th>
<th>120 Vrms</th>
<th>240 Vrms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS Current (Ampere)</td>
<td>0.0</td>
<td>12</td>
</tr>
<tr>
<td>BR11</td>
<td>MDA102</td>
<td>MDA102</td>
</tr>
<tr>
<td>C11 µF (10% tolerance)</td>
<td>0.047</td>
<td>0.047</td>
</tr>
<tr>
<td>R11 (10% 1 W)</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>R12 (10% 1/2 W)</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>R13 (10% 1/2 W)</td>
<td>620</td>
<td>620</td>
</tr>
<tr>
<td>TR11</td>
<td>2N6342</td>
<td>2N6342</td>
</tr>
<tr>
<td>Plastic</td>
<td>MAC42292</td>
<td>MAC6163</td>
</tr>
</tbody>
</table>

Fig. 41-16. Triac solid-state relay circuit for AC power control. The input circuit will function over the range of 3 to 33 volts (M).
Control Circuit Parts List

<table>
<thead>
<tr>
<th>Part</th>
<th>120 Vrms</th>
<th>240 Vrms</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>220 pF, 20%, 200 Vdc</td>
<td>100 pF, 20%, 400 Vdc</td>
</tr>
<tr>
<td>C2</td>
<td>0.022 µF, 20%, 50 Vdc</td>
<td>0.022 µF, 20%, 50 Vdc</td>
</tr>
<tr>
<td>D1</td>
<td>1N4001</td>
<td>1N4001</td>
</tr>
<tr>
<td>D2</td>
<td>1N4001</td>
<td>1N4001</td>
</tr>
<tr>
<td>OC1</td>
<td>MOC1006</td>
<td>MOC1006</td>
</tr>
<tr>
<td>O1</td>
<td>MPS5172</td>
<td>MPS5172</td>
</tr>
<tr>
<td>O2</td>
<td>MPS5172</td>
<td>MPS5172</td>
</tr>
<tr>
<td>R1</td>
<td>1 kΩ, 10%, 1 W</td>
<td>1 kΩ, 10%, 1 W</td>
</tr>
<tr>
<td>R2</td>
<td>47 kΩ, 5%, 1/2 W</td>
<td>100 kΩ, 5%, 1 W</td>
</tr>
<tr>
<td>R3</td>
<td>1 MΩ, 10%, 1/4 W</td>
<td>1 MΩ, 10%, 1/4 W</td>
</tr>
<tr>
<td>R4</td>
<td>110 kΩ, 5%, 1/2 W</td>
<td>220 kΩ, 5%, 1/2 W</td>
</tr>
<tr>
<td>R5</td>
<td>15 kΩ, 5%, 1/4 W</td>
<td>15 kΩ, 5%, 1/4 W</td>
</tr>
<tr>
<td>R6</td>
<td>33 kΩ, 10%, 1/2 W</td>
<td>68 kΩ, 10%, 1 W</td>
</tr>
<tr>
<td>R7</td>
<td>10 kΩ, 10%, 1/4 W</td>
<td>10 kΩ, 10%, 1/4 W</td>
</tr>
<tr>
<td>SCR1</td>
<td>2N5064</td>
<td>2N5064</td>
</tr>
</tbody>
</table>

Line Voltage

Triac Power Circuit
Fig. 41-17. Direction and speed control for series-wound motors (M).

Fig. 41-18. Triac relay-contact protection circuit (M).
Fig. 41-19. Pulse-width-modulated DC motor speed control incorporating voltage-sensing feedback.
Fig. 41-20. Triac zero-point switch for resistive loads (M).

Parts List

- **C1** — 1-mfd, 400-volt capacitor
- **C2** — 2-mfd, 10-volt capacitor
- **CR1** — GE-X14 thyrector diode (optional transient voltage suppressor)
- **CR2** thru **CR4** — GE-504A rectifier diode
- **F1** — 5-amp fuse and holder
- **R1** — 3900-ohm, 2-watt resistor
- **R2** — 330-ohm, 1-watt resistor
- **R3** — 1000-ohm, 1-watt resistor
- **R4** — 10K-ohms, 2-watt potentiometer
- **R5** — 500-ohm, 2-watt potentiometer
- **R6** — 200-ohm, 2-watt potentiometer
- **S1** — SPDT toggle switch
- **S2** — SPST switch (on speed and lamp adjust potentiometers)
- **SCR1** — GE-X1 silicon controlled rectifier mounted on 3" x 3" x 1/16" copper cooling fin
- **Minibox** — 6" x 5" x 4"

Fig. 41-21. Half-wave variable AC control for small motors and lamps. In the lamp position the SCR is controlled by P1. In the motor position and with S2 open the circuit incorporates a feedback feature that maintains a constant motor speed as the load changes. Do not use this circuit for controlling fluorescent lamps, transformers, AC motors with capacitor start, induction motors, shaded pole motors and the like. The motor controlled must have a commutator as found in DC or AC-DC universal motors (GE).
Cl – 2-mfd, 50-volt electrolytic capacitor
CR1, CR2 – GE-504A rectifier diode
CR3 – GE-X14 thyrector diode
R1 – 2500-ohm, 5-watt resistor
R2 – 500-ohm, 2-watt potentiometer
R3 – 200-ohm, 1-watt potentiometer
R4 – 1000-ohm, 1/2-watt resistor
F1 – See schematic diagram
S1 – SPDT toggle switch
SCR1 – See schematic diagram
Minibox – 4" x 2-1/4" x 2-1/4"
Line cord and grommet
Socket, AC output

Parts List

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>MOTOR NAMEPLATE RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR1</td>
<td>GE-X1 GE-C30B</td>
</tr>
<tr>
<td>F1</td>
<td>3 AMP 5 AMP</td>
</tr>
</tbody>
</table>

Fig. 41-22. Plug-in speed control for tools and appliances. Do not use this control on motors without commutators (GE).

Fig. 41-23. Thyristor half-wave control circuit with UJT trigger designed for a 600-ohm load (M).
Fig. 41-24. Triac full-wave control circuit with UJT trigger designed for a 900-watt load (M).

Parts List

CR1 — GE-504A rectifier diode for 130 watts output

CR2 — GE-X14 thyrector diode (optional transient voltage suppressor)

S1 — SPDT, 3-amp, 125-volt a-c switch with center "off" position

Fig. 41-25. High-low AC switch for light dimming or small motor two-speed control (GE).
Fig. 41-26. Regulated DC motor control with feedback from optical sensor (M).
Fig. 41-27. Variable speed control for induction motors (M).
Fig. 41-28. Variable speed control for induction motors (M).
MHTL Logic: Pin 14 Vcc
Pin 7 Gnd
*R_s SHOULD BE SELECTED TO BE ABOUT 3k TO 5k OHMS AT THE DESIRED OUTPUT LEVEL

Fig. 41-29. Feedback control circuit to trigger a thyristor (M).

Fig. 41-30. SCR full-range power controller incorporating an SUS (M).
Fig. 41-31. Electronic crowbar circuit using an SBS and a triac. This circuit protects equipment by placing a short-circuit across the line, thereby blowing the fuse. It works on DC circuits as well as AC types since the SBS and triac are both bilateral (M).

Fig. 41-32. High-intensity lamp dimmer or fan control. This circuit is for use with high-intensity lamps with a built-in transformer only; do not use with 120-volt standard household incandescent or fluorescent lamps. Fan motors should not draw more than 1.5 amperes (GE).
Fig. 41-33. MOS to AC load interface using an MOC3011 optically coupled triac driver (M).

<table>
<thead>
<tr>
<th>VCC</th>
<th>R</th>
<th>HEX BUFFER</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 V</td>
<td>220 Ω</td>
<td>MC73482</td>
</tr>
<tr>
<td>10 V</td>
<td>800 Ω</td>
<td>MC75482</td>
</tr>
<tr>
<td>16 V</td>
<td>910 Ω</td>
<td>MC14049B</td>
</tr>
</tbody>
</table>

Fig. 41-34. Hysteresis-free power controller using an SBS and a triac (M).
Fig. 41-35. Triac overvoltage protection circuit with automatic reset. If the voltage at point A exceeds 11 volts during any half-cycle D6 fires and turns on SCR Q1, removing power from the load (M).

Fig. 41-36. Low-cost light dimmer an SBS and triac. Shunting the SBS with two 20K resistors minimizes the flash-on effect (M).
Fig. 41-37. Triac heater temperature control circuit (M).

Fig. 41-38. An 800-watt triac light dimmer (M).
Fig. 41-39. An 800-watt soft-start triac light dimmer (M).

Fig. 41-40. Triac control circuit with current boost using an ECG776 zero voltage switch. Resistor R2 must be the external sensor for the internal short and open protection to be operative. Notice that the circuit utilizes a DC supply. Select the triac for the particular application form the ECG5600 series (GTE).
Fig. 41-41. Triac AC static contactor (M).

Fig. 41-42. Three-position static switch. In position 1 the switch is off; in position 2 the switch supplies full-wave power to the load; in position 3 the diode conducts only on half-cycles and the load is supplied with half-wave power (M).
Fig. 41-43. AC-controlled, triac switch. R1 is 100 ohms (M).

Fig. 41-44. Constant-current motor drive. All capacitors should be at least 50 working volts and resistors the half-watt type, except those values at 0.4 ohm and R_a. Use heat sinks for the power transistors with thermal compound. This circuit can be used where there is some likelihood or stalling or lockup. If the motor locks the current drive remains constant and the system does not destroy itself (l).
Fig. 41-45. Triac motor speed control with feedback (M).

Fig. 41-46. 800-watt triac light dimmer with silicon bilateral switch, SBS (M).

NOMINAL R5 VALUES

<table>
<thead>
<tr>
<th>Motor Rating (Amperes)</th>
<th>R5 OHMS</th>
<th>Warning Watt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0.67</td>
<td>10</td>
</tr>
<tr>
<td>6.5</td>
<td>0.32</td>
<td>15</td>
</tr>
</tbody>
</table>

R5 = \(\frac{2}{I_M} \)

where \(I_M \) = Max. Rated Motor Current (RMS)
Fig. 41-47. Remote control of AC load using an MOC3011 optically coupled triac driver (M).

Fig. 41-48. Projection lamp voltage regulator using a phototransistor, SCR and UJT (M).
Fig. 41-49. Solid-state relay circuit with input protection of the MOC3011 triac driver. The input voltage to the protection circuit can be 3 to 30 volts DC (M).

Fig. 41-50. Simple DC power control circuit using an SCR (M).
Fig. 41-51. Full-wave average voltage feedback control circuit for a 600-watt load (M).

Fig. 41-52. Simple full-wave power control circuit using a triac (M).
Fig. 41-53. Low-voltage-controlled triac switch (M).

NOTE: MOUNT GE-X12 ON 3" X 3" X 1/16" COPPER OR ALUMINUM COOLING FIN

Parts List

- C1 — 0.1-mfd, 200-volt capacitor
- C2 — 0.1-mfd, 50-volt capacitor
- CR1 — GE-X14 thyrector diode (optional transient voltage suppressor)
- PC — GE-X6 cadmium sulfide photoconductor
- R1 — 68K-ohms, 1/2-watt resistor
- R2 — 47K-ohms, 1/2-watt resistor
- R3 — 4700-ohm, 1/2-watt resistor
- R4 — 250K-ohm, 2-watt potentiometer
- Triac — GE-X12
- Diac — GE-X13

Fig. 41-54. Full-wave variable AC control for motors and lamps using a diac and triac. This circuit gives full symmetrical control from 0 to 100% over the AC load. For fan or blower operation it may be desirable to place a 100-ohm 1-watt resistor in series with a 0.1μF capacitor directly across the triac to improve performance. Best operation is achieved when the circuit is adjusted during the brightest part of the day. R4 is adjusted so that the lamp plugged into the outlet is just off. In this manner as it gets darker the light will come on (GE).
Fig. 41-55. Proportional controller for heater using two op amps. The integrating error amplifier holds the heater current pulse width at a sustaining value at equilibrium (BB).

Fig. 41-56. RMS open-loop voltage compensator (regulator) for small conduction angles. This circuit provides an output of 110/115 ± 2.5 volts at 600 watts for an input of 200 to 260 volts. This circuit is suitable for applications requiring a conduction angle of less than 90° (M).
Fig. 41-57. 240-volt triac control circuit driven by two MOC3011 optically coupled triac drivers (M).
Fig. 41-58. Direction and speed control for shunt-wound motors (M).

Fig. 41-59. Full range AC power control circuit using a triac (M).
Fig. 41-60. M6800 microprocessor to 115-volt AC load interface using optically coupled MOC3011 triac drivers (M).
Fig. 41-61. Full-wave trigger circuit for a 900-watt load using a triac and UJT (M).

Fig. 41-62. Half-wave average voltage control circuit for a 600-watt load (M).
Chapter 42
Power Supplies, Regulators and Voltage Multipliers
Fig. 42-1 High-stability 1A regulator (NS).

* Required if the regulator is located far from the power supply filter. A 1 μF aluminum electrolytic may be substituted.

** Required for stability. A 1 μF aluminum electrolytic may be substituted.

Fig. 42-2. Fixed output regulator (NS).
$-V_O = -5V - (5V/R_1 + I_Q) \cdot R_2,$
$5V/R_1 > 3I_Q$

Fig. 42-3. Adjustable output regulator (NS).

Fig. 42-4. A $\pm 15V$ 250 mA dual power supply (NS).
Fig. 42-5. A ± 15V, 1A tracking regulator (NS).

Load Regulation at 0.5A
(-15) 40 mV (+15) 2 mV
Output Ripple, $C_{IN} = 3000\mu F$, $I_L = 0.5A$
100μVrms 100μVrms
Temperature Stability
50 mV 50 mV
Output Noise 10 Hz ≤ f ≤ 10 kHz
150μVrms 150μVrms

*Resistor tolerance of R_4 and R_5 determine matching of (+) and (-) outputs
**Necessary only if raw supply filter capacitors are more than 3” from regulators
Fig. 42-6. Low-voltage adjustable reference supply (NS).

Fig. 42-7. A 6V shunt regulator with crowbar (NS).
Fig. 42-8. Programmable 1A power supply (NS).
Fig. 42-9. Protected high-voltage regulator (NS).
Fig. 42-10. Laboratory power supply (NS).
Fig. 42-11. A 1A negative regulator (NS).

Fig. 42-12. A 1A positive voltage regulator (NS).
Fig. 42-13. A 3-watt switching regulator that converts 5V to 200V for gas discharge displays such as Burroughs Panaplex and Beckman. The IC is a MC3380P (M).
Fig. 42-14. A 5V, 3A regulator with plastic boost transistor (M).

Fig. 42-15. A 6A variable output switching regulator (NS).
CURRENT REGULATION (NO LOAD TO FULL LOAD):

O.005%

INPUT REGULATION: < 0.01%/V

HUM AND NOISE OUTPUT: < 250 μV RMS up to 100 kHz

Fig. 42-16. Voltage regulator circuit rated at 0.1V to 50V at 1A (NS).
Fig. 42-17. A 10A regulator with foldback current limiting (NS).

Fig. 42-18. Switching regulator (NS).
Fig. 42-19. A 1A regulator with protective diodes (NS).

Fig. 42-20. Fixed 5V regulator (NS).

*Required if regulator is located more than 4" from power supply filter capacitor.

†Although no output capacitor is needed for stability, it does improve transient response.
C2 should be used whenever long wires are used to connect to the load, or when transient response is critical.

NOTE: Pin 3 electrically connected to case.
Regulation better than 0.01%, load, line and temperature, can be obtained.

† Determines zener current. May be adjusted to minimize thermal drift.

Solid tantalum.

Fig. 42-21. High-stability regulator (NS).

Fig. 42-22. A 1.2V to 25V adjustable regulator (NS).

$$V_{OUT} = 1.25V \left(1 + \frac{R2}{R1}\right)$$
Fig. 42-23. A 5A constant voltage—constant current regulator (NS).

Fig. 42-24. A 4A switching regulator with overload protection (NS).
Fig. 42-25. Adjustable 4A regulator (NS).
†Solid tantalum

*Discharges C1 if output is shorted to ground

Fig. 42-26. Adjustable regulator with improved ripple rejection (NS).

†Solid Tantalum

*Core—Arnold A-254168-2 60 turns

Fig. 42-27. Low-cost 3A switching regulator (NS).
Fig. 42-28. Dual trimmed supply (NS).

Fig. 42-29. A 5V to 10V power supply with 0.1 percent regulation (NS).
Fig. 42-30. A 10A regulator with complete overload protection (NS).

\[*C1 = 1 \mu F \text{ solid tantalum or } 10 \mu F \text{ aluminum electrolytic required for stability} \]

\[*C2 = 1 \mu F \text{ solid tantalum is required only if regulator is more than } 4" \text{ from power-supply filter capacitor} \]

Fig. 42-31. Adjustable Negative Voltage Regulator (NS.)
Minimum output $\approx -1.3V$ when control input is low

Fig. 42-32. -5V Regulator with Electronic Shutdown *(NS).

*The 10 μF capacitors are optional to improve ripple rejection

Fig. 42-33. Adjustable High Voltage Regulator (NS).
Fig. 42-34. 10 Regulator (NS).

$$R_1 = 240\, \Omega$$ for LM138 and LM238

Fig. 42-35. Slow turn-on 15V regulator (NS).
Fig. 42-36. Tracking Preregulator (NS).

C1 is not needed if power supply filter capacitor is within 3" of regulator

†Keep C4 within 2" of LM345. There is no upper limit on C4, and unlimited capacitance can be added at extended distances from the regulator.

D2 sets initial output voltage. The LM113 is available in -5, -4, and -1% tolerance.

Fig. 42-37. -2V ECL Termination Regulator (NS).
LM150

*Minimum load current ≈ 4 mA

Fig. 42-38. 1.2V-20V Regulator with Minimum Program Current (NS).

LM350

Fig. 42-39. AC voltage regulator.
Fig. 42-40. Positive Floating Regulator (NS).

Fig. 42-41. Shunt Regulator (NS).
Fig. 42-42. Positive Regulator, Step-Down Basic Configuration ($I_{\text{IN}}(\text{MAX}) = 80 \text{ mA}$) (NS).
Fig. 42-53. 1 Amp Step-Down Switching Regulator (NS).

* Mounted to Staver Heatsink No. V5 1
 Q1 = BD344, MJE171
 Q2 = 2N5023
 L1 = ~40 turns No. 22 wire on Ferroxcube No. K300502 Torroid core
Fig. 42-44. 15V, 0.5A Step-Up Switching Regulator (NS).

L1 = 26 turns No. 24 wire on Ferroxcube No. K300502 Toroid core.
Fig. 42-45. 5V, 500 mA Regulator with Short Circuit Protection (NS).

Fig. 42-46. Wide Range Tracking Regulator (NS).
\[V_{OUT} = V_G + 5V, \quad R1 = \left(-\frac{V_{IN}}{I_{O,LM78L05}}\right) \]

*Solid tantalum.

A 0.5V output will correspond to \(\frac{R2}{R4} = 0.1, \frac{R3}{R4} = 0.9 \)

Fig. 42-47. Variable Output Regulator 0.5V - 18V (NS).
Fig. 42-48. HV regulator (NS).

Fig. 42-49. Precision regulator (NS).
Fig. 42-50. — +15 volt regulator (M).

For detailed information see Motorola Application Note AN 480.
Fig. 42-51. — 5.0 Volt, 10-ampere regulator with short-circuit current limiting for safe-area protection of pass transistors (M).

Fig. 42-52. Current source (NS).

\[
* I_{OUT} = 1 \text{ mA} + \frac{5 \text{V}}{R1}
\]
Fig. 42-53. Positive regulator, step-up boosted current configuration (NS).
Chapter 43
Radar and Sonar
A permanent magnet attached to a rotating wheel provides modulation pulses to pin 8. The time duration for the Xmt mode is controlled by the voltage which is induced in a stationary pick up coil. The neon display is also mounted on this wheel.

One possible source for transducers is Linden Labs, Inc., P.O. Box 920, State College, PA 16801.

Fig. 43-1. A typical sonar application (NS).
Fig. 43-2. Electronics for adding an echo annunciator (NS).

Note 1: All diodes 1N914
Note 2: All resistors ±5% composition.
Note 3: Amps 1 to 4 = LM3900N quad amplifier.
Chapter 44
Radioteletype, Slow-Scan Television and Specialized Communications
Fig. 44-1. FSK demodulator at 2025-2225 cps (NS).
Fig. 44-2. FSK demodulator with DC restoration (NS).
Fig. 44-3. FSK with slope and voltage detection M).

Fig. 44-4. Frequency shift keyer using the MC1545G wide-band amplifier (M).
R1 = 10 k
C1 = 0.01 μF
R2 = 12 k
C2 = 0.01 μF
f1 = 1.6 kHz
f2 = 1.35 kHz

Fig. 44-5. Self-generating FSK (M).
Chapter 45
Readouts
$V_{REF} = 1.25V \left(\frac{R2}{1 + \frac{R1}{R2}} \right) + R2 \times 80 \mu A$

$12V \text{ to } 20V$

$I_{LED} = \frac{V_{REF}}{R1} + \frac{V_{REF}}{22}$

Note 1: Capacitor C1 is required if leads to the LED supply are 6" or longer.

Note 2: Circuit as shown is wired for dot mode. For bar mode, connect pin 9 to pin 3. V_{LED} must be kept below 7V or dropping resistor should be used to limit IC power dissipation.

Fig. 45-1. 0V to 10V log display (NS).
Fig. 45-2. 60 dB dot mode display.

* Optional. Shunts 100 μA auxiliary sink current away from LED #11.
Fig. 45-3. Low current bar mode display.

Supply current drain is only 15 mA with ten LEDs illuminated.
 LEDs light up as illustrated with the upper lit LED indicating the actual input voltage. The display appears to increase resolution and provides an analog indication of overrange.

Fig. 45-4. "Exclamation point" display (NS).
Full-scale causes the full bar display to flash. If the junction of R1 and C1 is connected to a different LED cathode, the display will flash when that LED lights, and at any higher input signal.

Fig. 45-5. Bar display with alarm flasher (NS).
Fig. 45-6. Indicator and alarm, full-scale changes display from dot to bar (NS).
Fig. 45-7. Driving liquid crystal display (NS).
Fig. 45-8. Bar display with alarm flasher (NS).
Chapter 46

 Receivers and RF Preamplifiers
T1 10.7 mc. FM input IF transformer, J. W. Miller 2070
T2 10.7 mc. FM interstage transformer, J. W. Miller 2071
T3 455khz input transformer, J. W. Miller CH1 2031
T4 455khz transformer, supplied with IF module
T5 driver transformer, 10K to 2K c.t. Midland 250633, Calrad CR75

output transformer, 500 ohms c.t. to 3.2 ohms, Midland 25-631
6.3V, .6 amp or smaller filament transformer, Triad F-13X
2 hy, 15 ma. low resistance choke, Stancor C2707

Fig. 46-1. High-performance receiver for 150 MHz.
4t. #20 bare copper ¾" ID ½" long
5t. #20 bare copper ¾" ID ¾" long
3t. #21 bare copper ⅞" ID ⅜" long tap
1t. from ground end

L4 13/4t. #14 bare copper ¾" ID tap ¾" turn from ground end link 1t. #20 bare copper ¼" away from ground end
L5 200 microhenry RF choke, J. W. Miller 9210-90
Ln 8t. #26 enamel closewound at one end of ¼" dia slug form
RFC-1 Ohmite Z-144 or 18 turns #24 wound on 1 meg 1 watt resistor
X1 crystal, 11.155 mc.
Fig. 46-2. Three transistor radio (AM). Adjust R4 so voltage across speaker is $\frac{1}{2}$ supply voltage. Works surprisingly well.
Fig. 46-3. High-impedance preamplifier provides up to 1.2 megohms input impedance; the exact value depends upon resistor R. Both Q1 and Q2 should be a 2N2613, 2N2614, 2N2953, SK3004, GE-2, or HEP 254. A balanced output for reduced hum and noise may be obtained by using the padded output in B.
Chapter 47
RF Power Amplifiers
Fig. 47-1. HF power amplifier (M).

\[\text{C1} = 33 \text{ pF Dipped Mica}\]
\[\text{C2} = 18 \text{ pF Dipped Mica}\]
\[\text{C3} = 10 \mu\text{F} 35 \text{ Vdc for AM operation,}\]
\[100 \mu\text{F} 35 \text{ Vdc for SSB operation}\]
\[\text{C4} = 1 \mu\text{F Erie}\]
\[\text{C5} = 10 \mu\text{F} 35 \text{ Vdc Electrolytic}\]
\[\text{C6} = 1 \mu\text{F Tantalum}\]
\[\text{C7} = 001 \mu\text{F Erie Disc}\]
\[\text{C8, 9} = 330 \text{ pF Dipped Mica}\]
\[\text{R1} = 100 \text{ k}\Omega 1/4 \text{ W Resistor}\]
\[\text{R2, 3} = 10 \text{ k}\Omega 1/4 \text{ W Resistor}\]
\[\text{R4} = 33 \pm 5 \text{ W Wire Wound Resistor}\]
\[\text{R5, 6} = 10 \Omega 1/2 \text{ W Resistor}\]
\[\text{R7} = 100 \Omega 1/4 \text{ W Resistor}\]
\[\text{RFC1} = 9 \text{ Ferroxcube Beads on #18 AWG Wire}\]
\[\text{D1} = 1N4001\]
\[\text{D2} = 1N4997\]
\[\text{D3} = 1N914\]
\[\text{G1, G2} = 2N4011\]
\[\text{G3, 4} = 80R454\]
\[\text{T1, T2} = 16 \Omega 1 \text{ Transformers}\]
\[\text{C20} = 910 \text{ pF Dipped Mica}\]
\[\text{C21} = 1100 \text{ pF Dipped Mica}\]
\[\text{C10} = 24 \text{ pF Dipped Mica}\]
\[\text{C22} = 500 \mu\text{F} 3 \text{ Vdc Electrolytic}\]
\[\text{K1} = \text{Potter & Brumfield}\]
\[\text{KT11A 12 Vdc Relay or Equivalent}\]
Fig. 47-2. Typical cathode-driven (grounded grid) amplifier for 80 through 10 meters (Eimac).
Fig. 47-3. A 150 MHz linear amplifier. Capacitors should have 1kV rating.
Fig. 47-4. Typical transistor rf power amplifier; L and C values depend on frequency of interest.
Fig. 47-5. 4CX250 amplifier for six and two meters, using single-pole switching. Simple modifications by K4ETZ[forget the 6 meter coil and use smaller HA tuning capacitors, class C bias and a grid tank] allow 10W drive, 200—250W out. Amplifier should have a screen clamp tube with G2 supply bled down from B+ for best results.

Fig. 47-6. Kilowatt linear amplifier (rf) for 50 MHz. Requires 2500 to 3000V dc for 5—500A plate.
Fig. 47-7. Rf amplifier produces 18W output when driven with 5W at 150 MHz. Suggested layout employing shielding is shown.
Fig. 47-8. A 40m. 200W amplifier. T1:2 Amodon 15/16 in. diameter toroids. Primary; 25T No. 22 Formvar. Four secondaries; 5T No. 22 Formvar each. T2. 2 Airwound windings, 18T each, No. 14 Formvar, 13/16 diam. These windings are paralleled and shaped into a donut 3½ in. diam. C1—450 pF broadcast variable C2 through 6—0.1 μF, 100V. C7—450 pF wide spaced variable. C8—similar. R1, R3, R5—7 to 10Ω, 2 to 5W wirebound. R2, R4, R6, R8—450Ω, 1W. RFC ¾ dia. ferrite rod, 50T No. 22 Formvar.
Fig. 47-9. 40m. 75W amplifier. T1: Amidon 15/16 in. toroid. Primary; 50T No. 24. 2 secondaries; 10T, No. 24, solid insulated wire each. T2: Same type core except 2 used; 2 windings No. 16 Formvar 5T each connected in parallel. RFC: 3/8 dia. ferrite rod, 60T No. 22 Formvar. C1, C5: mica adjustable 200-800 pF. C2, C3: 1 \(\mu \)F disc, 100V max. 25V min. C6: mica adjustable 400-1200 pF. R2, R3: 10, 2-5W. R1, R4: 450\(\Omega \). Q1, Q2: TRW PT4526 or similar.
Fig. 47-10. This 10-meter linear amplifier for SSB service uses transistors which were designed specifically for single-sideband linear operation. Many junction transistors cannot be used satisfactorily for this application, because linear amplification at low power levels is a serious problem.
Fig. 47-11. A 50 MHz transmitter power amplifier. Rf choke is 7—10 µH C6 is 1000 pF disc. Q1, Q2 are HEP 75s.

Fig. 47-12. A 2-meter amplifier that has 20 dB gain. 100 or 200 mW input will be amplified to 10 and 20 watts, respectively. Be sure to keep leads short and make all grounds directly to the circuit board. The positive bus is separated so the final can be used for AM. For FM, just connect the two terminals together. Don’t forget to use heatsinks!
Fig. 47-13. A 150-MHz 10-watt rf power amplifier schematic, parts list, and board layout.

Fig. 47-14. This 10-meter single side band linear power amplifier will provide up to 8 watts PEP. The power gain of the 2N(947) is 13 dB at this frequency, and the odd order distortion products are at least 30 dB below the desired output.
Chapter 48
Sample & Hold Circuits
Fig. 48-1. Sample & hold circuit (NS).

Fig. 48-2. Sample & hold and compare with new +Vin (NS).
Fig. 48-3. High-speed sample & hold circuit (NS).
Fig. 48-4. Negative peak detecting sample & hold (M).
"I—

Fig. 48-5. Low-drift sample & hold (NS).

*Polycarbonate dielectric capacitor.
Chapter 49
Servo Motor Circuits
Fig. 49-1. Line-operated servo motor amplifier (M).
Fig. 49-2. Servo motor preamplifier (M).

OP INTEGRATION
$A_{V1} = 0 \text{ dB}$

PRE AMPLIFIER
$A_{V2} = 40 \text{ dB}$

PHASE-SPLITTING
$A_{V3} = 0 \text{ dB}$
Fig. 49-3. Servo motor preamplifier (M).
Fig. 49-4. Servo motor preamplifier (M).
Fig. 49-5. Servo motor preamplifier (M).
Fig. 49-6. Servo motor power amplifier (M).
Fig. 49-7. DC servo amplifier (NS).
Chapter 50
Smoke and Flame Detectors
Fig. 50-1. Flame detector (NS).

Fig. 50-2. This flame detector circuit uses an infrared sensitive detector diode. A transistor-type detector can be substituted for the diode.
The value of this potentiometer is dependent on the resistance of photocell PC1 when it is illuminated. The potentiometer should have a resistance of roughly double that of photocell PC1 when it is illuminated.

R1, R3—5.6kΩ, 1/2W
R4, R5—1kΩ, 1/2W
R6—470Ω, 1/2W

S1—Push-button, Lafayette 34P02047V
AL1—Siren alarm, Lafayette 14P37508
PC1—Photoconductive cell VT-30L, Newark Electronics 61F1092

Lamp—Any light source that will allow photocell PC1 to be activated when no smoke is present.

Fig. 50-4. Smoke alarm.
Chapter 51
Solid-State Switches
Fig. 51-1. Two-wire remote speed switch (NS).
Fig. 51-2. Finger touch or contact switch (NS).
Fig. 51-3. 100-cycle delay switch (NS).

V3 steps up in voltage by the amount $\frac{V_{CC} \times C1}{C2}$ for each complete input cycle (2 zero crossings).

Example:
If $C2 = 200 \times C1$ after 100 consecutive input cycles.
$V3 = \frac{1}{2} V_{CC}$
Chapter 52
Telephone Circuits
Component values (typ)
R1 6.8 to 15k
R2 4.7k
R3 20k
C1 0.10 mfd
C2 1.0 mfd 8V
C3 2.2 mfd 8V
C4 250 mfd 8V

Fig. 52-1. Touch-tone decoder (NS).
Fig. 52-2. Full time phone monitor.
Chapter 53
Test Equipment and Metering Circuits
This application shows that the LED supply requires minimal filtering.

* See Application Hints for optional Peak or Average Detector.

† Adjust R3 for 3 dB difference between LED #11 and LED #12

Fig. 53-1. Extended range VU meter (NS).
Logarithmic response allows coarse and fine adjustments without changing scale.

Resolution ranges from 10 mV at $V_{IN} = 0$ to 500 mV at $V_{IN} = \pm 1.25V$.

Fig. 53-2. Precision null meter (NS).
Fig. 53-3. Light meter (NS).
Fig. 53-4. Wide range AC voltmeter (NS).
Fig. 53-5. Sensitive low-cost "VTVM" (NS).
Fig. 53-6. Light meter (NS).
Fig. 53-7. LF11300, MM5330 DPM (NS).
Fig. 53-9. 3½-digit voltmeter (NS).
Fig. 53-10. Wide-band AC voltmeter (NS).

Fig. 53-11. Sensitive low-cost "VTVM" (NS)
Fig. 53-12. 1,000,000:1 single-control function generator—1 MHz to 1 Hz (RCA).
Fig. 53-13. 3½-Digit DVM, four decade, ±0.2V, ±2V, ±20V and ±200 V full scale (NS).
NOTES
1 ALL RESISTORS 1/4 WATT 5% UNLESS OTHERWISE SPECIFIED
2 ALL CAPACITORS 10%
3 LOW LEAKAGE CAPACITOR REQUIRED
4 R1R2 R3 = 25k
5 OFFSET ADJUST REQUIRED FOR MM74C935 1 ONLY
Fig. 53-14. 3½-Digit, ±1.999 volts full scale (NS).
Fig. 53-15. Peak-reading VU indicator (PM).

688
Fig. 53-16. Wide-range LC checker.
Fig. 53-17. Dip meter.
Fig. 53-18. Pocket size signal generator.

Note: Differences between shorts, coils, and a few ohms of resistance can be heard.

Fig. 53-19. “Buzz Box” continuity and coil checker (NS).
Fig. 53-20. Vibration meter (NS).

<table>
<thead>
<tr>
<th>LED</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60 mV</td>
</tr>
<tr>
<td>2</td>
<td>80 mV</td>
</tr>
<tr>
<td>3</td>
<td>110 mV</td>
</tr>
<tr>
<td>4</td>
<td>160 mV</td>
</tr>
<tr>
<td>5</td>
<td>220 mV</td>
</tr>
<tr>
<td>6</td>
<td>320 mV</td>
</tr>
<tr>
<td>7</td>
<td>440 mV</td>
</tr>
<tr>
<td>8</td>
<td>630 mV</td>
</tr>
<tr>
<td>9</td>
<td>890 mV</td>
</tr>
<tr>
<td>10</td>
<td>1.25 V</td>
</tr>
</tbody>
</table>
Fig. 53-21. Using a digital frequency counter without a direct connection.

Fig. 53-22. Carrier shift meter.
Fig. 53-23. Vertical and horizontal bars can be generated with this circuit for checking TV sweep linearity.

Fig. 53-24. Audio generator capable of operation from 20 to 20,000 Hz. Optional connections shown for dual or single 9V dc supplies. The 25K dual potentiometer should have a linear (not audio) taper.
Fig. 53-25. Sensitive rf voltmeter has full-scale ranges from 30 mV to 10V with a flat frequency response to 200 MHz. All FETs, transistors, and diodes used in pairs should be carefully matched.
Fig. 53-26. SWR bridge. Parts list: T1—60 turns No. 30 enameled wire over Amidon T-68-2 toroid core. Close wind the turns. Primary is two turns No. 22 or 24 hookup wire wound over center of secondary. C1 C2—1.5–7 pF ceramic trimmer (Lafayette No. 68386 mica usable) R1, R2—120 ohm 1/2 W CR1, CR2—1N34A or equivalent (Radio Shack No. 821 for pack of 10; select two that match the closest). C3, C4—0.005 μF disc type C5—330 pF ceramic or silver mica RFC—1mH choke S1—SPDT (Use DPDT Radio Shack rocker; No. 030 for kit of two) R3—20,000 ohm linear taper control (Radio Shack No. 094) Meter—50 μA to 1 mA movement (Lafayette 500 μA No. 50361 a good size).

Fig. 53-27. A general-purpose rf detector probe for use with an oscilloscope or voltmeter.
Fig. 53-28. This high-impedance probe provides about 1200 megohms input impedance with unity gain. Upper frequency equalization is provided by the 5K pot. Q1 is a U112, 2N2607, 2N4360; Q2 is a 2N706, 2N708, 2N2926, 2N3394, or HEP 50.

Fig. 53-29. One of the easiest types of diode checks for a person with a scope is this, but it tells nothing about a diode's high voltage performance.
Fig. 53-30. Although this capacitance meter will not measure electrolytic capacitors, it will measure any other type from zero to 0.1 \(\mu \text{F} \) with reasonable accuracy. On the lower end 4 pF can be read accurately and 2pF easily estimated. Transistors Q1 and Q2 are 2N168, 2N1605, 2N2926, SK3011, or HEP 54; the meter is a 0-50 microampere unit and the range switch a Centralab PA1021.
Fig. 53-31. Z-match antenna tuner and SWR bridge couples any antenna to any transmitter or receiver, low frequencies to VHF. Allows smooth transition from series to parallel tuning without bandswitching. Construction details shown in accompanying figure.
Fig. 53-32. Overall schematic of the tuner.

Diagram Details:
- **C1:** 350 pF
- **R1:** 150 nF 1W
- **R2:** 150 nF 1W
- **R3:** 1K 1W
- **RFG1:** 2.5 mH
- **C5:** 001 DISC
- **F1:** 1/16 A
- **R4:** 100K
- **L3:**
- **L4:**
- **C2A:** 250 pF
- **C2B:** 250 pF
- **S1:** D.P.D.T. HQVY DUTY CERAMIC
- **S2:** S.P.D.T. WAFER
- **L1:** 5-1/2 T 10 AWG, 2 in. I.D., 1-1/4 in. LG
- **L2:** 5 T 10 AWG, 2-1/2 in. I.D., 1-1/4 in. LG, MOUNTED OVER L1.
- **L3:** 2 T 10 AWG, 2 in. I.D., 2-3/4 in. LG
- **L4:** 6 T 10 AWG, 2-1/2 in. I.D., 1-1/4 in. LG, MOUNTED OVER L3.
Fig. 53-33. This logarithmic amplifier makes use of the fact that when two back-to-back diodes are driven by a current generator, they exhibit a logarithmic output of the input signals. With the circuit constants shown, this amplifier follows a nearly perfect logarithmic curve over a 60 dB range; selected diodes will increase this to 80 dB. Q1, Q2 and Q3 are 2N2924, SK3019, GE-10, or HEP 54; D1 and D2 are IN914.
Fig. 53-34. Full circuit diagram for ohmmeter capable of measuring resistance down to less than 0.001Ω. The two circuit points marked 'A' are wired directly together.

Fig. 53-35. LED voltage and continuity tester.
Fig. 53-36. Signal injector.

Fig. 53-37. Super-simple diode checker.
Fig. 53-38. Field-strength meter.

Fig. 53-39. Wattmeter uses two 50 µA meters and indicates forward and reflected power simultaneously from 100kHz to 70MHz.
Fig. 53-40. Astable multivibrator produces audio signal rich in harmonics for signal-tracing applications; may be fitted into plastic cigar container. Transistors are 2N3841; any general-purpose types will suffice.

Fig. 53-41. Portable impedance bridge, field-strength meter, and crystal calibrator.
Fig. 53-42. Performance monitor for Motorola FM communications equipment plugs in; selector switch is used to choose function to be monitored. Adapts to other units by changing connector type.
Fig. 53-43. Basic "lumped-line" oscillator. Tank circuit has appearance of conventional coil but functions as full-wave transmission line with no exposed high-impedance or "hot" points.

Fig. 53-44. A 60 Hz square wavetr.
Fig. 53-45. Crystal checker. When the button is pushed, a good crystal should cause the bulb to light.

Fig. 53-46. This simple device gives a quick check of diodes. If lamp A lights, the diode is good. If B lights, the diode is good, but connected backwards. If neither lamp lights, the diode is open; and if both light, it is shorted.
Fig. 53-47. Audible voltmeter produces tone that rises with applied voltage. Chart shows linear relationship of tone to voltage.
1. All resistors are 1/4 watt.
2. All electrolytic (or tantalum) capacitors are subminiature type rated at 25 VDC.

TO RUSTRAK RECORDER

12V

2200

R4

C24

0.1

6800

C23

1000μF

2200

C22

2200

CR5

TP4

2N1613

+3.6V

10

C21

220

+3.6V

D8

MC726G

+3.6V

1

= 0

CR4

TO C20

2200

R3

10K

MC714G

0.3

+3.6V

0

SW1

0100

SIG

+3.6V

Q4

MC700G

+3.6V

Q5

MC723G

+3.6V

Q6

MC723G

+3.6V

Q7

MC723G

TO Q2

7
Fig. 53-48. WWVB frequency comparator receiver uses a heterodyne process to display error between WWVB at 60 kHz and local rf producing device. ICs are Motorola.
Fig. 53-49. Lumped-line oscillator with tuning provisions and buffer amplifier. Circuit values shown for 21 MHz oscillator.
Fig. 53-50. Postinjection marker circuit with dc gain control of marker size.
Fig. 53-51. A 50Ω attenuator circuit for a receiver front end. Use for measuring effectiveness of different antennas by listening to a constant-amplitude signal.

Trim L1 for best waveshape. An overtone crystal (odd order) can be substituted for C1. For 51 ohm output change R1 and R4, reduce supply to 8 volts. Heat sinks suggested on Q1 and Q2. When cutting and tying, reduce input to about 6 volts.

All resistors are ½W carbon. Capacitors in decimal are disc type (short leads). 2N708's for best performance are Fairchild (other brands work, but do not give clean waveshape).

Harmonics observed into microwave region. Symmetrical square wave at output; dc reference to ground. Output at 4 MPS ≈ .5 watt. Short circuit protected.

Fig. 53-52. Square-wave source.
Fig. 53-53. Various ways of using simple voltmeters as frequency readout devices in conjunction with voltage-tuned diodes (varactors).
Fig. 53-54. A 0.025 to 10W RF wattmeter.

Fig. 53-55. Direct-reading inductance meter. Must be calibrated by user.
Fig. 53-56. Dual-tone test generator uses pair of Wien bridge oscillators. Requires power source of ± 12V.
Fig. 53-57. Unijunction-transistor sweep generator offers simplicity and excellent reliability/repeatability.

Fig. 53-58. Regenerative detector generates broadband signal on 27 MHz citizen band, for use in tweaking any companion receiver unit.
Fig. 53-59. A simple "grid dip" meter that uses a bulb as a resonance indicator. Using the GE-9 transistor will enable the unit to oscillate up to 12 MHz. The indicator lamp should be a No. 48 or 49 bulb. L1 should be wound to cover desired frequency ranges.

Fig. 53-60. The square-wave output of many inexpensive signal generators deteriorates quite badly at high frequencies, but this circuit will square them off again. The diodes may be any inexpensive computer type such as the 1N914.
Fig. 53-61. A circuit for testing characteristics of "bargain pack" diodes. The transformer is 600—1000V CT and the two diodes in the half-wave circuit are 1000 PIV. The filter capacitor should be approximately 40 μF apiece with suitable voltage rating. To test an unknown diode, connect as shown and read the voltage on the VTVM Two-thirds of this reading can be interpreted as a safe PIV rating. Reversing the diode reads forward characteristics—a reading of less than 3V indicates a good diode. No voltage indicates a shorted diode.

![Circuit Diagram](image)

<table>
<thead>
<tr>
<th>Desired Rating</th>
<th>Current Scale in Amps</th>
<th>Necessary Resistance of Meter</th>
<th>Internal Resistance of Meter</th>
<th>Series Resistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.0005</td>
<td>200Ω</td>
<td>150Ω</td>
<td>1850</td>
</tr>
<tr>
<td>5</td>
<td>.0005</td>
<td>10K</td>
<td>150Ω</td>
<td>9850</td>
</tr>
<tr>
<td>10</td>
<td>.0005</td>
<td>20K</td>
<td>150Ω</td>
<td>19850</td>
</tr>
<tr>
<td>50</td>
<td>.0006</td>
<td>100K</td>
<td>150Ω</td>
<td>99850</td>
</tr>
<tr>
<td>100</td>
<td>.0005</td>
<td>200K</td>
<td>150Ω</td>
<td>199850</td>
</tr>
<tr>
<td>500</td>
<td>.0005</td>
<td>1 meg.</td>
<td>150Ω</td>
<td>999850</td>
</tr>
</tbody>
</table>

Fig. 53-62. Ac/dc voltmeter. Table shows resistance value for desired full-scale indication of 500 μA meter.
Fig 53-63. Beta tester.

Fig. 53-64. Field-strength meter can be used to tune coils, antennas, and other resonant devices. To cover 13—24 MHz, L1 is to be resonant when used with C1, and should consist of a couple of turns of No. 16 wire wound over L2. L2 is 11 turns No. 16 solid spaced so coil is 1 in. dia by 1 in. long.
Fig. 53-65. Schematic of milliwattmeter for measuring rf power levels of 1—1000 mW.

Fig. 53-66. Line quadrature-generator type transistor and SCR tester.
Fig. 53-67. Although this capacitance meter will not measure electrolytic capacitors, it will measure any other type from zero to 0.1 μF with reasonable accuracy. On the lower end 4 pF can be read accurately and 2 pF easily estimated. Transistors Q1 and Q2 are 2N168, 2N1605, 2N2926, SK3011, or HEP 54; the meter is a 0—50 microampere unit and the range switch a Centralab PA1021.
Fig. 53-68. LM frequency meter updated by FETs that can be made to plug directly into pentode sockets.
Fig. 53-69. Compact VOM circuit. Keep resistor values as accurate as possible. Meter movement is 500 µA with an internal resistance of 150 ohms.

Fig. 53-70. Two oscillator circuits for aligning receivers, anonymously presented originally in FM Bulletin.
Fig. 53-71. Transistor beta tester.

Fig. 53-72. A 5 to 300W rf wattmeter metering circuit. External 300 or 400W during antenna load.
Fig. 53-73. A 0.05—500 mW wattmeter.

Fig. 53-74. Capacity meter. L1-C2 and L2-C4 should tune to the same frequency, around 1450 kHz. Calibrate by setting C4 near max and mark that "zero." Peak meter with C2, which is zero adjustment. Calibrate with known capacities and mark C4 dial.
Fig. 53-75. This schematic gives the basics for a simple, inexpensive audio frequency meter. For the cheapie special version, omit all switches and components associated with them. Connect a capacitor of proper value in place of S1A. Ranges are: OFF, 30 kHz, 10 kHz, 3kHz, 1kHz, and 300 Hz. Meter is 0-1 mA.
Fig. 53-76 Dummy load and rf wattmeter for 50 ohms. R1 and R2 are each made from 8 paralleled 2-watt resistors of precisely 220 Ω each.

Fig. 53-77 Crystal tester schematic.
GENERAL NOTES ON SCHEMATIC
ALL FIXED RESISTORS ARE 1/4 WATT
.001 AND .01 CAPACITORS ARE DISC CERAMIC
CAPACITORS MARKED "SM" ARE SILVER MICA R1
AND R2 STANDARD CARBON ELEMENT POTENTIOMETERS
C2, C3, AND C4 ARE ELECTROLYTICS-25WVDC OR MORE

Fig. 53-78. Sweep oscillator circuit.
Fig. 53-79. Simple devices can be built to indicate when defined modulation percentages are achieved. This arrangement uses neon bulbs and switching diodes to fire the bulbs when the negative-peak modulation reaches 50%, 80%, and 100%, respectively. Bottom ends of neon bulbs return to voltages which are uniformly 65V more negative than the voltage marking the corresponding modulation percentage. These voltages, and the resistance values in the divider which establishes them, depend upon the voltage supplied to the transmitter (here assumed to be 600V). The 65V offset is the firing voltage of the neon bulb. When the upper end goes 65V more negative than the lower end, the corresponding bulb can fire. In use, the object is to keep the 50% bulb on all the time, the 80% bulb on as much of the time as possible, but never permit the 100% bulb to flash.

Fig. 53-80. Crystal oscillator calibrator, high in square-wave output (you will be able to hear it up into the VHF bands), which may be made into two calibrators since the circuit uses only half of the Motorola IC.
Fig. 53-81. Reflected power meter and CW monitor. L1 is 12 in. RG-11/U coax with plastic coat removed. 5-inch pieces of No. 20 hookup wire inserted under shield for pickup loops.
VHF amplifier used to measure gain, noise figure, and agc performance of the Fairchild FT0601 MOSFETs. For agc operation, dual-gate MOSFETs have a built-in advantage owing to their separate gates, especially in the VHF region. Amplifiers such as this one eliminate cross modulation distortion, decrease receiver noise, and avoid shifting of the receiver's center frequency. Schematic from Fairchild Semiconductor Application Note APP-189.
Fig. 53-84. VHF prescaler for extending counter range to 300 MHz.
Fig. 53-85. Rf wattmeter is simple and accurate, but logarithmic. A 22K resistor gives 10W full-scale indication.

Fig. 53-86. This crystal calibrator has a fundamental 1 MHz crystal and its frequency is divided to give outputs of 1 MHz, 100 kHz, and 10 kHz. Circuit courtesy of Zero Beat (Victoria BC).
Fig. 53-87. Crystal oscillator for aligning receivers.

Fig. 53-88. Simple resistance decade uses no switching but requires access to resistor junctions.
Fig. 53-89. VHF prescaler for frequencies up to 200 MHz.
Fig. 53-90. General-purpose digital IC tester.
Fig. 53-91. Linear IC tester.
Fig. 53-92. Resistance decade in H configuration. Select values after examining table to see a sequence of value increases.

Fig. 53-93. When testing a capacitor, the light will blink once or twice while the plates are loading and then will remain off. If the capacitor is not good, the light will continue to blink. When checking capacitors wired into circuits, one end must be disconnected. R1—47K 2W resistor, R2—330K 2W resistor, LM-1—neon lamp NE 51, C1—8 or 10 µF capacitor 450V dc, CR1—1M3611 diode (not critical), SWL—ST toggle switch, F—½A fuse.
Fig. 53-94. Resistance decade using rotary switch for resistance selection. Circled letters show switch connections.

Fig. 53-95. Dip meter uses junction FETs gate rather than vacuum-tube grid for dip function.
Fig. 53-96. Signal generator for aligning FM receivers in 150 MHz region. Resistor marked with * may have to be changed to lower value if recommended transistor is not used.
Fig. 53-97. Schematic of 100 KHz calibrator. Parts values are not critical and the transistors do not have to be the ones listed. It is suggested that a late version of the GE transistor manual be consulted for a slightly revised oscillator circuit.

Fig. 53-98. Transistor sorter identifies polarity of bipolars; audible signal gives good indication of device gain. T1 is a miniature 400Ω (.8pCT) to 4 or 8Ω transistor output transformer.
Fig. 53-99. Sweep generator for 430–470 kHz.

Fig. 53-100. This circuit will provide direct reading of transistor beta right on your VOM ohm scale. Polarities are shown for PNP.
NOTES.
1. UNLESS OTHERWISE INDICATED
 RESISTANCE IS IN OHMS.
2. S1 = 4-POLE, 3-POSITION SWITCH.

Fig. 53-101. Transistor parameter tracer.
Fig. 53-102. Basic circuit of a popular and simple adapter for testing common "milliwatt" transistors.

Fig. 53-103. This simple bridge circuit will measure antenna input resistance at resonance. Remember tolerances on capacitors are commonly very loose. A capacitor checker can do an adequate job of matching.
Note: Load current to GND is supplied through R_S

$$R_S = (V^- - 6.8V) \times 10^3 \Omega$$

Fig. 54-1. Basic thermometer for negative supply.

$$R_S = (V^- - 6.8V) \times 10^3 \Omega$$

Fig. 54-2. Basic thermometer for positive supply (NS.)
The \(0.01 \) in the above and following equations is in units of \(V/K \) or \(V/\degree C \), and is a result of the basic \(0.01V/K \) sensitivity of the transducer.

Fig. 54-3. Thermometer with meter output (NS).

\[
R_1^* = \frac{(V_Z)0.01\Delta T}{I_M(V_Z - 0.01T_O)}
\]

Select \(I_O \leq \frac{2V}{R_1} \)

\[
R_2 = \frac{0.01T_O - I_O R_1}{I_O}
\]

\[
R_3 = \frac{V_Z}{I_O} - R_1 - R_2
\]

\[
(I_O \leq \frac{2V}{R_1})
\]

\[
V_Z = \text{Shunt regulator voltage (use 6.85)}
\]

\[
\Delta T = \text{Meter temperature span (°K)}
\]

\[
R_3^* = \frac{I_M}{38.1k}\text{°K}
\]

\[
I_O = \text{Meter zero temperature (°K)}
\]

\[
I_O = \text{Current through R1, R2, R3 at zero meter current (10μA to 1.0 mA) (A)}
\]

* Values shown for:
 \(T_O = 300 \text{ K, } \Delta T = 100 \text{ K,} \)
 \(I_M = 1.0 \text{ mA, } I_O = 100 \mu A \)

** The \(0.01 \) in the above and following equations is in units of \(V/K \) or \(V/C \), and is a result of the basic \(0.01V/K \) sensitivity of the transducer.

Fig. 54-4. Meter thermometer with trimmed output (NS).

\[
* \text{Selected as for meter thermometer except } T_O \text{ should be 5°K more than desired and } I_O = 100\mu A
\]

\[
* \text{Calibrates } T_O
\]
Fig. 54-5. Remote sensing digital thermometer (NS).

Fig. 54-6. Thermometer (NS).
Fig. 54-7. Resistance thermometer transmitter (NS).

Fig. 54-8. Two-wire remote AC electronic thermostat (gas or oil furnace control) (NS).
Fig. 54-9 Three-wire electronic thermostat (NS).
Fig. 54-10. Ground referred thermometer (NS).

\[
V_\text{Z} = \text{Shunt regulator voltage} \\
\Delta T = \text{Temperature span (°K)} \\
T_O = \text{Temperature for zero output (°K)} \\
V_O = \text{Full scale output voltage} \leq 10V \\
I_O = \text{Current through R1, R2, R3 at zero output voltage (typically 100μA to 1.0 mA)}
\]

Fig. 54-11. Ground referred centigrade thermometer (NS).
\[V_{\text{OUT}} = 0.01 \left(\frac{R_1 + R_2}{R_1} \right) (T_2 - T_1) \]

Output can swing 3V at 50mA with low output impedance.

** The 0.01 in the above equation is in units of V/°K or V/°C, and is a result of the basic 0.01 V/°K sensitivity of the transducer.
Chapter 55
Timers
Fig. 55-1. Zero stand-by power timer (NS).

Fig. 55-2. Electronic timer (5 to 180 seconds).

Parts list:

- SCR1—HEP R1221
- T1—HEP G0005
- T2—HEP 50014
- D1, D2, D3, D4, D5—HEP R0052
- C1—50μF 15V electrolytic
- C2—50μF 150V electrolytic
- R1—3kΩ 5W
- R2—33Ω 1/2W
- R3—potentiometer 1MΩ 2W linear
- R4—470Ω 1/2W

117V 60Hz

INCREASE TIME

LOAD 240W MAX

C1

SCR1 R1221

R0052

R0052

D1 D2

OFF

ON

S1

R6

47Ω

C4

1MΩ

R7

10Ω

T1

G0005

R5

150Ω

47Ω

R4

T2

S0014

50μF 150V

R3

C2

117V 60Hz

0V

3K

15V

10K

20K

0.01μF 1K

1μF

+15V

TRIGGER

7MS

R8

3K

C

SCR1-HEP R1221
T1-HEP G0005
T2-HEP S0014
D1 D2 D3 D4 D5-HEP R0052
C1-50μF 15V electrolytic
C2-50μF 150V electrolytic
R1-3kΩ 5W
R2-33Ω 1/2W
R3-potentiometer 1MΩ 2W linear
R4-47Ω 1/2W

R6-47kΩ 1/2W

R7-10kΩ 1/2W

117V 60Hz

758
Fig. 55-3. Interval timer.
Fig. 55-4. Solid-state timer.
Chapter 56
Transmitters,
Transceivers, Exciters and VFOs
This two frequency crystal oscillator changes frequency by simply reversing the supply voltage. When the supply voltage is changed, the transistor inverts itself; usually transistors may not be used in the inverted mode, but in an oscillator a gain of only 1 or 2 is needed and this circuit provides a novel and simple way of obtaining two frequencies from a single stage with a minimum of switching.
L₁—1/4” dia. 7T #24
L₂—2T at cold end of L₁
L₃—6T Airdux 608 (B&W 3010) CT

Fig. 56-3. A 100 mW 6 meter transmitter. Modulate AM with a TA300 IC or FM with a couple of diodes.

Fig. 56-4. This beat-frequency oscillator may be added to existing receivers with a minimum of difficulty. The BFO frequency is determined by the i-f transformer which provides feedback from collector to emitter. Transistor Q₁ should be a 2N384, 2N1749, 2N2362, T1M10, SK3008, GE-9, or HEP 2.
Fig. 56-5. This is the old familiar vacuum tube Pierce oscillator circuit with a field-effect transistor in place of the thermionic triode. Circuit constants shown here are for the 1 MHz region, but the tuned circuit may be adjusted to any frequency desired. Q1 is a 2N4360.

Fig. 56-6. This two-frequency crystal oscillator changes frequency by simply reversing the supply voltage. When the supply voltage is changed, the transistor inverts itself; usually transistors may not be used in the inverted mode, but in an oscillator a gain of only 1 or 2 is needed. This circuit provides a novel and simple way of obtaining two frequencies from a single stage with a minimum of switching. Almost any PNP rf transistor will work as Q1. D1 & 2 are general-purpose silicon diodes.
LI 8 TURNS B&W 3003 (6 TURNS PER INCH, 1/2" DIAM).
TAPPED AT 4 TURNS FROM COLD END
L2 5 TURNS NO 16, 5/8" DIAM, 1" LONG
L3 3 TURNS NO 16 BIFILAR WOUND ON COLD END OF L2.
Q1 2N384, SK3008, TIXM03
RFC 18 µH (OHMITE Z-144)

Fig. 56-7. This simple 2-meter transmitter may be used as a driver for a larger 144 MHz transmitter or a signal source for testing receivers, converters, and antennas.

T1 - 21 TURNS, 7 TURNS NO 36 AWG WIRE ON MICROMETALS T-12-2
Lp = 1.3 µH, Ls = 0.1 µH

Fig. 56-8. A 5-10 MHz VFO or 40-meter QRP transmitter; an idea for those backwoods hikes. Courtesy Motorola HMA36, IC Projects for Amateurs.
XTAL 7 MHz fundamental
Q1 40080
Q2 40081
L1 20 turns No. 28 on ¼” dia. slug tuned form
L2, L4 5 turns No. 24 on L3
L3 28 turns No. 28 on ¼” dia. slug tuned form
K1 sensitive SPST relay for 12V (see text)

Fig. 56-9. Simple low-power transmitter (1 watt) is ideal for CW operation (no modulator).

Fig. 56-10. AM wireless transmitter. Useful for baby-sitting, sick watch, intercom, etc. L1 is a variable antenna coil, (Celectro D1 841). L2 is four turns of hookup wire wound on top of L1. Q2—3 are NPN silicon transistors (Celectro K4-507).
Fig. 56-11. Variable crystal-controlled oscillator circuit.

Fig. 56-12. FM wireless transmitter (88—108 MHz). Circuit courtesy Calectro Handbook. C7 is a short length of twisted hookup wire about ¼ inch long. L1 is four turns length about ½ inch and ¼ inch dia.
Fig. 56-13. Double-sideband transmitter for operation in 27-28 MHz range.

Fig. 56-14. This simple 2-meter transmitter may be used as a driver for a larger 144 MHz transmitter or a signal source for testing receivers, converters, and antennas.
Fig. 56-15. Here is a stable VFO that can be assembled in a short time on a piece of Vectorboard. Coil data is supplied for an 80m and 6m version but other bands may be covered with a bit of experimentation. Transistors are all MPS706 but higher output is possible by replacing Q3 with a 2N2270 or 2N3053.
Fig. 56-16. A 2-meter crystal oscillator. The transmitter crystal is used, the netting capacitor is adjusted so that the crystal is zero-beat with someone who is considered as being on frequency. Then the oscillator may be used to align a receiver. Since the output is so high (measured 18V peak-to-peak across the choke), it must be loose-coupled to the receiver. This is done by winding two turns around the choke. One end of the winding is connected to the connector; the other end is connected to a 15Ω resistor which is then connected ground. This circuit is very active and will handle crystals from 2 MHz to 30 MHz.

Fig. 56-17. This Colpitts crystal oscillator may be used with either fundamental or overtone crystals from 10 to 84 MHz with the tuned-circuit components listed. It oscillates quite readily when adjusted and provides a stable output.
Fig. 56-18. Field-effect-transistor variable frequency oscillator has zero temperature coefficient. Operating frequency in 3.5 MHz range.

Fig. 56-19. This untuned crystal oscillator will oscillate with any crystal from 300 kHz to 10 MHz. Frequency stability is very good because the emitter-follower buffer amplifier effectively isolates the oscillator from the load. Q1 and Q2 are GE-9, SK30006, or HEP 2.
Fig. 56-20. FET replaces vacuum tube in the H23 oscillator to complete the transistorization operation. Components not labeled in the sketch are those components that are already part of the existing oscillator circuit.

Fig. 56-21. 10 MHz crystal oscillator.
Fig. 56-22. Schematic for beeper. All resistors are $\frac{1}{2}$ watt.
Fig. 56-23. Ultrahigh-stability crystal oscillator circuit that is useful for microwave transmitter frequency control. Use crystals from 1.6 to 160 MHz, fundamental or overtone. For best results get the values of the coils and capacitors for any specific frequency from your friendly neighborhood reactance chart.
L1 = TUNED TO RESONATE WITH C2 - COLLECTOR TAP 1/3 UP FROM COLD END

C1 = CAPACITIVE REACTANCE OF APPROX. 90 \Omega
AT OPERATING FREQUENCY

<table>
<thead>
<tr>
<th>FREQ (MHz)</th>
<th>50</th>
<th>141</th>
<th>220</th>
<th>432</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 (pF)</td>
<td>36</td>
<td>12</td>
<td>8.2</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Fig. 56-24. This crystal oscillator was designed specifically for overtone crystals and will oscillate up to the 11th overtone in the VHF range. Suitable values for C1 are shown for the VHF bands; for other frequencies, C1 should exhibit approximately 90\Omega capacitive reactance for best results. Q1 is a TM10, T1400 or HEP 3.

Fig. 56-25. This simple UHF oscillator will provide about 2 mW up to 1000 MHz; some selected transistors will provide usable power up to 1500 MHz or so. Q1 is a 2N918, 2N3478, 2N3564, or HEP 65.
This 3 watt 10 meter transmitter maintains high efficiency and low cost by paralleling three inexpensive silicon transistors in the final stage.

Fig. 56-26.
Fig. 56-27. This 6-meter transmitter provides up to 50 watts of power with very good efficiency and very low harmonics. The 2N3950 in the final provides a minimum power gain of 8 dB at 50 MHz and is rated at 50 watts continuous service.
Fig. 56-28. Superstable variable-frequency oscillator uses three Motorola MPS706. Unit also serves as a low-power transmitter. Oscillator is little-known Vackar circuit, said to outperform the Clapp.
Fig. 56-29. Schematic of the VFO and power supply. Regulation is provided for both the oscillator and buffer. If more rf output is required, a tuned circuit (toroid, of course) can be installed in the emitter of Q2 in lieu of the 100Ω resistor.
Fig. 56-30. Transistor VFO for 5-6 MHz for SSB mixing service.

Fig. 56-31. A 1800 Hz command oscillator for FM. Q1—any PNP signal transistor have a Vce rating of 1/2 or more times the supply voltage. Some suggestions: 2N404, 2N1303 series, 2N2904 series, 2N3638 series, or 2N6533 series. Q2—any NPN small-signal transistor having a minimum beta of 100 and a Vcc of at least the supply voltage. Some suggestions: 2N1308, 2N2712, 14, 16, 2N2916, 18, 10, 2N3565, 2N3569, 2N6513, 14, 15, 20, or 21. Ctrim—0.0062 µF was used in the first unit. If Mylar capacitors and the toroid are ± values, f1 = 1817 Hz. If C1 is 10% low, f1 = 1897 Hz. If C1 is 10% high, f1 = 1741 Hz. To find a value for Ctrim, measure the frequency (f1) without Ctrim. If it is higher than 1800 Hz. (f0) calculate Ctrim. Ctrim = 0.1 (f1/f0² - 1) = F.
Fig. 56-32. A 50 MHz 40W transmitter for 12.5V operation.
Fig. 56-33. This crystal oscillator will oscillate with any crystal between 3 and 20 MHz with no tuning whatsoever; overtone crystals will oscillate on their fundamental in this circuit. Q1 is a 2N1177, 2N1180, 2N1742, GE-9, SK3006, or HEP 2.

Fig. 56-34. A 50-MHz transmitter with speaker as AM microphone.
Fig. 56-35. Schematic of 2½W 6m transmitter. L1 and L2 = 6 turns No. 20 on iron-core ⅛" ceramic form. Links are 2 turns No. 20 insulated at bottom of L1 and L2. L3 is center tapped. These coils are surplus, used, as-is. Both windings are ½" long. L4 = 6 turns Airdux 516 or B&W 3007.01 = Fairchild 2N364; Q2 = RCA 40081; Q3 = Bendix B3466 or RCA 2N3553 or 40341 (all heatsinked).
Fig. 56-36. Transistor transmitter puts out 30 watts at 3.5 MHz, and uses Texas Instruments’ TIP 14s.
This two frequency crystal oscillator changes frequency by simply reversing the supply voltage. When the supply voltage is changed, the transistor inverts itself; usually transistors may not be used in the inverted mode, but in an oscillator a gain of only 1 or 2 is needed and this circuit provides a novel and simple way of obtaining two frequencies from a single stage with a minimum of switching.

Fig. 56-38. Single oscillator and diode provide two injection frequencies for dual-conversion receivers. Transistor Q1 is a 2N1745, 2N2188, T1M10, GE-9, or HEP 2; the diode should be a 1N82A or similar.
L1, L2 30 turns #32 enameled wire close wound on ¼" slug tuned form. J. W. Miller 464000CPC or CTC 2206-2-3

L3 32½ turns #32 enameled wire close wound on ¼" slug tuned form. (same form as above)

L4 11 turns 1" diameter 16 TPI, AirDux or B & W.

L5 4 turns hookup wire wound around the center of L4.

Fig. 56-39. Continuous-wave transceiver for 7 MHz produces 100 mW of rf in transmit; delivers clean notes to earphone in receive mode. Coil data at lower right.
Fig. 56-40. Minimod schematic.
Fig. 56-41. Unique 150 MHz exciter circuit uses 2N5188's exclusively. Output is about 1 watt unmodulated.
Fig. 56-42. Schematic of "Little Bill" transmitter. L1 = 13 turns No. 28 P.E. VW, L2 = 2 turns link on cold end, L3 = 13 turns No. 28 P.E. CW. All coils close-wound on 6 mm diameter slug-tuned ceramic forms.

FERRITE BEADS MAY BE USED ALSO INSTEAD OF RESISTOR, FOR STABILITY OF STAGE.
This untuned crystal oscillator will oscillate with any crystal from 300 kHz. Frequency stability is very good because the emitter-follower buffer amplifier effectively isolates the oscillator from the load. Q1 and Q2 are 2N993, 2N1749, 2N2084, 2N2362, T1M10, GE-9, SK3006, or HEP 2.

This two frequency crystal oscillator changes frequency by simply reversing the supply voltage. When the supply voltage is changed, the transistor inverts itself; usually transistors may not be used in the inverted mode, but in an oscillator a gain of only 1 or 2 is needed and this circuit provides a novel and simple way of obtaining two frequencies from a single stage with a minimum of switching.
Fig. 55-45. This variable crystal oscillator (VXO) may be used to vary the frequency of an 8 MHz crystal 4 or 5 kHz when the 365 pF dual variable is tuned through its range. When multiplied to 2 meters of 432 MHz, this provides a very stable variable frequency. For 8 MHz crystals, L1 is a 20—25 μH slug-tuned coil; L2 is chosen to resonate at 8 MHz with the 30 pF capacitor.

Fig. 56-46. Microminiature CW transmitter may be world’s smallest! L and C are selected for resonance at crystal frequency.
Fig. 56-47. A 12 MHz VFO for TR22.

Fig. 56-48. A 6 or 2 meter transistor VFO with output on 24-25 MHz. The oscillator operates on 8-8.3 MHz.
Fig. 56-49. Schematic diagram of solid-state 7 MHz transceiver.
Fig. 56-50. Novice transmitter for 80 meters.

Fig. 56-51. Solar-powered CW transmitter using tunnel diode.
Chapter 57
TV Circuits
Fig. 57-1. TV horizontal processor (NS).

Fig. 57-2. Channel selection by DC control or audio mixer (NS).
Fig. 57-3. TV channel and time display interfacing MM53100 (NS).
Fig. 57-4. TV channel and time display interfacing MM5318 (NS).
Fig. 57-5. Color TV chroma processing system with a PLL featuring APC and ACC (GTE).
Fig. 57-6. Color TV chroma signal processor. The ECG728 provides subcarrier regeneration and total chroma signal processing prior to demodulation. The coils of the chroma amplifier and bandpass amplifier are stagger-tuned to provide a combined typical bandpass of 3.08 to 4.08 MHz. A burst separator amplifier injects the burst signal into the 3.58 MHz oscillator. The ACC detector and killer detector sense the burst level or absence of burst, respectively, by monitoring the oscillator's response to the burst injection level. The thresholds for the ACC and killer are independently adjusted by resistors R2 and R1 at terminals 9 and 4. The chroma input is at pin 14 and the oscillator output is at pin 8. Pin 6 is a zener diode for use as a regulated voltage reference at 11.9 volts (GTE).
Fig. 57-7. TV horizontal processor with phase detector, oscillator, and predriver. Suited for all types of TV receivers, this circuit features internal shunt regulator, preset hold control capability, ±300-hertz pull-in, linear balanced phase detector, variable output duty cycle for driving tube or transistor, low thermal frequency drift, adjustable DC loop gain and positive flyback inputs (GTE).
- $R_Z = 6.8 \, k$ per 100 V of flyback amplitude.
Fig. 57-8. TV video IF amplifier and detector using two 8-pin DIPs. Power gain is as follows: 60 dB at 45 MHz (pin 3 open), 56 dB at 58 MHz (pin 3 open), 61 dB at 45 MHz (pin 3 bypassed), and 59 dB at 58 MHz (pin 3 bypassed). AGC range is 80 dB from DC to 45 MHz. C4 should be 0.002 μF at 45 MHz (GTE).
Fig. 57-9. Complete TV vertical circuit with AFC for 90-degree 20-inch receivers (GTE).
Fig. 57-10. TV video IF amplifier, video detector, and signal processor circuits. Used in color and B&W TVs (GTE).
All windings #30 AWG tinned nylon acetate were tuned with high permeability cores. Complete transformer is available from Coilcraft, Type R4786.

L1 wound with #26 AWG tinned nylon acetate were tuned by dosing winding.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>39 MHz</td>
<td>24 pF</td>
<td>18 pF</td>
<td>33 pF</td>
</tr>
<tr>
<td>45 MHz</td>
<td>15 pF</td>
<td>12 pF</td>
<td>33 pF</td>
</tr>
<tr>
<td>58 MHz</td>
<td>10 pF</td>
<td>10 pF</td>
<td>18 pF</td>
</tr>
</tbody>
</table>

L1 12 Turns
R1 See Operating Characteristics, "Nose Inverter" section
Fig. 57-11. TV horizontal AFC and oscillator with sync separator for positive sync, using an ECG1086 16-pin DIP. The single transistor shown is an ECG199, a horizontal driver stage (GTE).
Fig. 57-12. Color TV subcarrier generator using an ECG 1105 16-pin DIP. The ECG1105 consists of a keyed APC, an ACC, a killer detector amplifier, a burst amplifier and a subcarrier amplifier (GTE).
Fig. 57-13. TV video signal processor. The ECG1070 is a 16-pin DIP (GTE).
Fig. 57-14. TV horizontal AFC and oscillator with sync separator for negative sync, using an ECG1086 16-pin DIP. The single transistor stage is the horizontal driver and can be an ECG199 bipolar transistor (GTE).
Fig. 57-15. Color TV chroma processor using an ECG797 16-pin QIP with AFPC, ACC, and killer (GTE).
Fig. 57-16. TV video signal processor circuit. The ECG 1064 chip contains a first video amplifier, two sync pulse amplifiers, lock-out protector, noise detector, two noise gates, AGC detector, IF AGC amplifier, RF AGC delay clamp, RF AGC amplifier, beam current limiter and sync pulse separator (GTE).
Fig. 57-17. TV video IF output and detector with AFT and sound take-off output. All coils and transformers are standard and can be purchased at a local electronic parts jobber (Merit or Miller components). Sound output at 4.5 MHz is typically 300 mV RMS. AFT output is typically 210 mV RMS at a test frequency of 57 MHz. Typical voltage gain for the video IF is 36 dB (GTE).
Fig. 57-18. Color TV chroma processor using an ECG 1089 20-pin DIP. The ECG 1048 noted on the schematic is a chroma demodulator. The ECG703A is a 3.58 MHz amplifier (GTE).
Fig. 57-19. Color TV demodulator with color amplifiers. The ECG1131s shown are chroma signal amplifiers. The ECG1130 is a 16-pin DIP (GTE).
Fig. 57-20. Complete FM/TV 4.5 MHz sound channel using an ECG1045 14-pin DIP. Audio power output is 1.5 watts. The ECG1045 contains a three-state high-gain directional IF amplifier and a ratio detector. IF transformers and the AF output transformer are standard items and can be purchased at Radio Shack. This circuit can be modified for 10.7 MHz operation by selecting the proper IF transformers (GTE).
Fig. 57-21. Color TV chroma signal amplifier. The ECG1131 is a 16-pin DIP and consists of a chroma amplifier, an ACC amplifier, a burst gate amplifier, an ACC peak detector, a color killer, a DC chroma gain control, a DC uni-color control and a balanced sampling circuit for the burst signal. By connecting the control terminal of the uni-color and contrast terminal of the ECG1131 it is possible to control chroma gain and contrast simultaneously (GTE).
Fig. 57-22. Color TV subcarrier generator. The crystal shown is for 3.58 MHz. The ECG1131 noted on the schematic is a chroma signal amplifier. The ECG1132 is a 16-pin DIP (GTE).
Fig. 57-23. Color TV chroma processor. The ECG1158 includes the functions for chroma amplifier, oscillator, ACC, color killer and color control (GTE).
T_1: 1 (PRIMARY) 0.18 mm\(\phi \) 3T-3T (BIFILAR WOUND) 0.37 \(\mu \)H
2 (SECONDARY) 0.18 mm\(\phi \) 4T (CENTER OVERLAPPING WOUND) 0.25 \(\mu \)H
T_2: 0.18 mm\(\phi \) 3T (BIFILAR WOUND) 0.4 \(\mu \)H
T_3: 0.6 mm\(\phi \) 2-3/4T (CENTER TAPPED) 0.11 \(\mu \)H
T_4: 0.1 mm\(\phi \) 27-7/8T (BIFILAR WOUND) 22 \(\mu \)H
L: 0.1 mm\(\phi \) 21T 1.2 \(\mu \)H

Fig. 57-24. TV video processor. The ECG1134 contains a picture IF amplifier, a video detector, a video amplifier, keyed AGC with noise immunity, delayed AGC for the tuner, an AFT amplifier, a sound IF amplifier, a sound carrier detector, a 4.5 MHz sound carrier amplifier and a reverse AGC voltage for MOS FET tuner. Coil data is shown below schematic (GTE).
Fig. 57-25. TV vertical sync delay circuit.

Fig. 57-26. Full-wave SCR bridge power supply for color TV rated at 80 volts, 1.5 amperes. This circuit is designed for 19-inch color receivers (M).

829
Fig. 57-27. Low-noise TV IF system with two FET amplifiers (M).

830
Fig. 57-28. A 4.5MHz color TV sound IF amplifier using ECG703A. In a color TV the 4.5 MHz IF is not generated in the video detector as in B&W sets. A separate transistor sound detector, driven from the final video IF amplifier, is used to develop the 4.5 MHz IF. The driver transformer at the input of the chip is tuned to 4.5 MHz. The output drives a conventional ratio detector, which provides good AM rejection well below full limiting (GTE).
*L₁ = 16µH NOMINAL, Q_{UNLOADED} = 50

Fig. 57-29. TV FM sound system using the ECG712. The supply terminal can be connected to any supply voltage with a suitable dropping resistor provided that the dissipation rating, 400 mW, is not exceeded since the ECG712 has internal zener regulation. Besides TV, the circuit can be used for FM mobile communications. It also enjoys DC volume so no shielding is necessary (GTE).
Fig. 57-30. Typical ECG746 video IF amplifier and ECG747 low-level video detector circuit (GTE).
Fig. 57-31. Color TV chroma demodulator. The ECG1048 is a 14-pin DIP with an end metal tab. The ECG1089 partially shown is a color processor chip (GTE).
Chapter 58
Video Amplifiers
Fig. 58-1. Video amplifier with AGC using an MC1552/1553 wide-band amplifier (M).

Fig. 58-2. Video amplifier with AGC using an MC1553 wide-band amplifier (M).
Fig. 58-3. Video switch. With a logic one at pin 1 the amplifier is turned on (M).

Fig. 58-4. 30 MHz video amplifier using an MC1552G. Set R to 1K for a voltage gain of 55 (M).

TRANSFORMER:
12 TURNS
#30 AWG SE WIRE ON 1/4" FORM
Lp = 1µh
Lg = 1µh
Lm = 0.35µh
Chapter 59
Voice Communications
This figure shows the LM1596 used as a single sideband (SSB) suppressed carrier demodulator (product detector). The carrier signal is applied to the carrier input port with sufficient amplitude for switching operation. A carrier input level of 300 mVrms is optimum. The composite SSB signal is applied to the signal input port with an amplitude of 5.0 to 500 mVrms. All output signal components except the desired demodulated audio are filtered out, so that an offset adjustment is not required. This circuit may also be used as an AM detector by applying composite and carrier signals in the same manner as described for product detector operation.

Fig. 59-1. SSB product detector (NS).
Fig. 59-2. Suppressed carrier modulator (NS).

Note: S_1 is closed for "adjusted" measurements.
Fig. 59-3. FM scanner noise squelch circuit (NS).
Fig. 59-4. Amplitude modulator (NS).

Fig. 59-5. Typical amplitude modulator circuit.

Parts list
IC1—MC1596G
C1, C2, C3, C4—0.005 \(\mu \)F
All resistors 1/4W
R1, R2, R3—1k\(\Omega \)
R4, R5—3.9k\(\Omega \)
R6, R7, R8—51k\(\Omega \)
R9, R10—10k\(\Omega \)
R11—50k\(\Omega \) pot
R12—6.8k\(\Omega \)
Fig. 59-6. Frequency modulator (self-excited oscillator).
Fig. 59-7. Flea-powered CW transmitter.
Chapter 60
Waveform Generators
* PIN CONNECTIONS SHOWN ARE FOR METAL CAN.

Fig. 60-1. Pulse width modulator (NS).

Fig. 60-2. Square wave oscillator (NS).
Fig. 60-3. Sawtooth generator (NS).

Fig. 60-4. Free-running staircase generator pulse counter (NS).
\((V^+ = 15 \text{Voc}) \)

Fig. 60-5. Triangle/square generator (NS).

Output is TTL compatible
Duty cycle is adjusted by R1
Frequency is adjusted by C

\(f = 1 \text{ MHz} \)
Duty cycle = 20%

Fig. 60-6. Pulse generator (NS).
Fig. 60-7. Triangle waveform generator (NS).

V2 output is TTL compatible
R2 adjusts for symmetry of the triangle waveform
Frequency is adjusted with R5 and C

Fig. 60-8. Time delay generator (M).

ON FOR T to + \Delta t
WHERE
\Delta t = R C \ln \left(\frac{V_{\text{ref}}}{V_{CC}} \right)
Use LM125 for ±15V supply

The circuit can be used as a low frequency V/F for process control.

Q1, Q3: KE4393, Q2, Q4: P1087E, D1–D4 = 1N914

Fig. 60-9. Triangular, squarewave generator (NS).
Fig. 60-10. Programmable Pulse generator (M).

Fig. 60-11. Pulse generator (astable multivibrator) with provisions for independent control of "ON" and "OFF" periods (RCA).
Fig. 60-12. Function generator—(frequency can be varied 1,000,000/1 with a single control) (RCA).
Fig. 60-13. Squarewave generator (NS).

Output is TTL compatible
Frequency is adjusted by R1 & C (R1<<R2)

Fig. 60-14. Pulse generator uses unijunction. Pulse width is determined by base 2 inductance. Rise and fall times will be 2-5% of pulse width.
Fig. 60-15. Universal frequency generator divides input signal (1 MHz master oscillator, crystal oscillator, or any external sine-wave source) by factor of 10 or 2. Note gates driving LEDs, which light to indicate crystal is oscillating. (Output frequencies shown are for 1 MHz oscillator.)
Variable-frequency oscillator operates over 75-80 meter range (about 3.5 MHz).
Fig. 60-17. Sync generator circuit with waveforms at representative test points.

* = 30 pF, JOHNSON TYPE M
TAP 1 – 4T
Tap 2 – 3T
L1-10 Turns, 8 TPI

Fig. 60-18. Crystal oscillator for 45 MHz.
Fig. 60-19. This simple sawtooth generator could be added to a monitor oscilloscope.

Fig. 60-20. Pulse generator with 25% duty cycle.
Fig. 60-21. This simple sawtooth generator is linear within 2% and may be adjusted from 1 kHz to 3 kHz with the center frequency control. Q1, Q3, Q4 and Q6 are FETs such as the 2N3819, 2N3820, T1S34, MPF105 or HEP 801; Q2 is a 2N388, 2N2926, 2N3391, SK3011 or HEP 54; Q5 is a 2N1671, 2N2160, 2N2646, 2N3480, or HEP 310.
Fig. 60-22. A 455 kHz modulated, regulated output signal generator.

Fig. 60-23. Crystal calibrator. This circuit gives symmetrical square waves out on 100, 50, 25, and 10 kHz. The frequency switch may be any distance from the totally shielded calibrator, as the lines have only dc levels.
Fig. 60-24. A sweep frequency generator is a very handy gadget, but many times the commercial units are more complicated than required. This simple sweeper may be used at any spot frequency between 100 kHz and 60 MHz. By using a three-position range switch, the three most popular frequencies may be used, such as 455 kHz, 1600 kHz, and 10.7 MHz. Q1 is a 2N1671, 2N2160, 2N2846, 2N3480, or HEP 310; Q2 is a 2N741, 2N1747, 2N2188, GE-9 or HEP 2. The varactor is a 56 pF capacitance diode such as the 1N955 or TRW V56.
Fig. 60-25. A simple sine-wave generator.

Fig. 60-26. Complete square-wave generator. Bandswitching capacitors are 10% or tolerances. Resistors are ¼ watt.
Fig. 60-27. 567 IC makes simple dual square-wave source. Note 80° phase shift between waves.

L1 = MILLER 9009, 180 TO 750 mH, WITH ADDED TURNS

Fig. 60-28. A 2000 Hz test oscillator. L1 is commercial 180 mH coil with about 80 added turns.
Fig. 60-29. Simple sweep generator for monitor scopes provides 30 Hz saw-tooth from NE2 neons.

Fig. 60-30. This signal injector/tracer switches from the injection mode to a signal tracer by simply plugging in a pair of high-impedance magnetic headphones. As a tracer, it works from audio up to 432 MHz. Transistor Q1 is a 2N170, 2N388A, 2N1605, SK3011, or GE-7; Q2 is a 2N188A, 2N404, 2N2953, SK3004 or HEP 253.
Fig. 60-31. Extremely stable signal generator provides output in range from 1.8 to 450 MHz at impedance of 50 ohms; output is adjustable from 80 nV to more than 50 mV rf.

Fig. 60-32. Square-wave generator will operate over a wide frequency range from audio to rf. Capacitor and pot control frequency.
D1, D2 = 1N34 or other germanium.
Q1, Q2 = μL914 or equivalent.

Fig. 60-33. Circuit shown above provides a square-wave output from Q2 whose audio frequency is changed alternately by action of multivibrator Q1. The resulting warbling note provides an excellent burglar alarm.

Fig. 60-34. Oscillator with double frequency output.
Fig. 60-35. Precision oscillator with 20 nsec switching.

Fig. 60-36. Pulse generator (S).
Fig. 60-37. A 45 MHz oscillator and tripler section.
Fig. 60-38. SSTV ramp generators. This circuit will give an extremely linear ramp for SSTV monitors, cameras, and flying spot scanners. The voltage varies from -10 to $+10$V. A positive going pulse of $+2$ to $+5$V amplitude resets the ramp for the next sweep.
Fig. 60-39. Schematic of the ramp generator circuit.
Fig. 60-40. Schematic of the triple-wave output signal generator.
Fig. 60-42. Sweep oscillator circuit.

COIL TABLE

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>DIAMETER</th>
<th>WINDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 MHz</td>
<td>7/8"</td>
<td>26 TURNS - 1 1/8" LONG</td>
</tr>
<tr>
<td>14 MHz</td>
<td>7/8"</td>
<td>7 TURNS - 1/2" LONG</td>
</tr>
</tbody>
</table>

GENERAL NOTES ON SCHEMATIC - FIG 3

All fixed resistors are 1/4 watt composition .001 and .01 capacitators are disc ceramic capacitators marked "SM" are silver mica R1 and R2 standard carbon element potentiometers C2, C3, and C4 are electrolytics - 25VDC or more.
Index

A
AC control, half-wave 550
flasher circuit 348
meter 269, 270, 271
overload circuit breaker 460
power control circuit 573
switch, high-low 552
voltage regulator 599
AC-coupled noninverting amplifier 88
AC/DC converter 236
voltmeter 722
Active filter 318, 319
Active tone control 126, 127
3-band 25
Active-low-pass filter 32
A/D add/subtractor 185
A/D converter 12, 13, 186, 187, 188
8-bit 10
12-bit 11
ADC 198
Adjustable high voltage regulator 596
Adjustable Negative Voltage Regulator 595
Adjustable output regulator 578
Adjustable reference supply 580
Adjustable regulator 590
4V 592
with ripple rejection 593
Alarm, frequency-sensitive photo-activated 530
AM broadcast-band receiver 43
radio power amplifier 24, 442
wireless transmitter 766
Amplifier 91, 93, 100, 102, 107, 109, 306
cathode-driven 635
50MHz transmitter power 643
5-watt 93
40m, 75W 641
40m, 200W 640
40-watt—8-ohm, 60-watt—4-ohm 106
high-slew-rate power 487
low-drift low-noise single sideband linear power 494
20-watt—8-ohm, 30-watt—4-ohm 117
2-meter 643
voltage-controlled 90, 478
with bass boost 81, 91, 118
with gain of 50 90
with gain of 200 82
Amplifiers 305
Amplitude modulator 298, 843
Amplitude modulator circuit 843
Analog Devices 284-J isolation amplifier 162
AND gate 179
Antenna impedance bridge 297
Antenna input resistance 748
Antenna switch 314
Antenna tuner, Z-match 700
Antennascope 297
Arc tangent function 423
Asymmetric multivibrator 706
Asynchronous data entry 365
Attenuator circuit 716
Audible voltmeter 711
Audio amplifier 11, 113, 120
Audio compressor 133
Audio conditioning unit 144
Audio decoder 233
Audio fence for animals 347
Audio frequency meter 299, 730
Audio frequency meter/tachometer 299
Audio generator 695
Audio mixer 442
Audio preamplifier compressor 142
Auto headlight reminder 155
Auto wiper control 156
Automatic gain control amplifier 95
Automatic light turn-on 340
Automobile immobilizer 153
Auxiliary agc detector 278
Auxiliary agc diode 277
Average voltage control circuit 575

B
Balanced line driver 420
Bandpass active filter 323
Bandpass filters 322
Bar display
with alarm flasher 623, 626
Battery charger 158, 159, 160
Battery-level indicator 360
Battery-threshold indicator 358
BCD A/D converter 182, 183
BCD DAC 189
Bedside light 346
Digital musical notes 481
Digital numbers, analog sum 197
Digitally programmable 260
Limit detector 196
Diode checks, super-simple 704
Diode checks detector 698
Mixer 274
Noise generator 300
Receiver 69
Ring balanced modulator 282
Squelch 278
Switches 291, 292
Diodo 280, 289, 293.
Bargain pack 722
Dip meter 691, 743
Direct frequency modulation 289
Distortion amplifier 83
Divider circuit 422, 431, 432, 433
Divider, with digitally controlled gain 429
Dot mode display 620
DPM schematic diagram 672
DPM 3 1/2-digit 686
Driving liquid crystal display 625
Dual power supply 578
Dual square-wave source 863
Dual trimmed supply 594
Dummy load 296, 731
DVM adapter 384
DVM, 3 1/2-digit 684
Dwell/tachometer 148
Dynamic range compressor 143
E
ECGB55M timer/oscillator chip 259
ECG746 video IF amplifier 854
Echo annunciateur 612
ECL Terminating regulator 598
ECL to TTL interface 366
Edge detector circuit 404
EGK input amplifier 166
Electric appliance power control 538
Electromechanical control system 217
Electromechanical latching relay 225
Electronic crowbar circuit 559
Electronic disc 354-355
Electronic integrator 150
Electronic roulette wheel 350
Counter decoder logic 350
Electronic siren 338
Electronic temperature sensor 19
Electronic timer 758
Emergency lantern/flashing light 463
Emergency lighting system 339, 344
Emergency road flasher 148
Emitter bypass capacitor 312
Emitter follower 134
Encoder 194-195, 216, 230
Envelope detector 256, 261
Exclamation point display 622
Exciter circuit 789
Existing audio compressor 137
Expanded scale meter 441
Extended range VU meter 670
External reference connection 196
F
Fast summing amplifier 87
Feedback control circuit 558
Feedback network 403
Feed forward amplifier, unity-gain 503
Feedforward frequency compensation circuit 491
FET 772
FET AGC circuit 492
FET preamplifier, dual-gate 43
Field-strength meter 293
Filters 320
Finger touch switch 664
Fire alarm 660
Fixed 5V regulator 589
Fixed output regulator 577
Flame detector 659
Flasher, 1 5 V 462
154
Flashlight finder 439
Flickering flame effect 335
Flip-flops 400
Floating voltage controlled resistor 449
Fluorescent lamp 342
FM detector 44
FM discriminator 282
FM preamplifier 2-meter 63
FM receiver 23
FM scanner noise squelch circuit 842
FM wireless transmitter 767
FM/TV 4.5 MHz sound channel 824
Forward transitor agc 277
4CX250 amplifier 638
Four-quadrant multiplier 327
Free running multivibrator 473
Frequency averaging tachometer 461
Frequency comparator 385
Frequency compensation circuit 487
Single pole 503
Two pole 500
Frequency counter 384
Block diagram 412-413
Schematic 410-411
Frequency counter input 389
Frequency divider 327, 329, 330
Frequency doubler 844
Frequency multiplier 326, 391
Frequency shift keyer 616
Frequency standard 382
Wiring diagram
FSK, self-generating 617
FSK demodulator 614
Free running multivibrator with DC resoration 615
Function generator 853
G
Gated amplifier 486
General-purpose amplifier 84
Generator, one-pulse-per-second 408
Sine-wave 862
Single-control function 683
Square-wave 862, 865
Grid block keying 248
Grid dip meter 721
Ground referred centigrade thermometer 755
Ground referred thermometer 755
H
Hand agc 315
Heating aid 335
Heating aid battery 211
Heart rate monitor 164-165
Heater control 206
HF power amplifier 633
Hi-fi power amplifier 96
High pass filter 317
Hold circuit 254
Hot-carrier diode converter 75
<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational amplifier</td>
<td>79</td>
</tr>
<tr>
<td>unity-gain</td>
<td>502</td>
</tr>
<tr>
<td>OR gate</td>
<td>180</td>
</tr>
<tr>
<td>Oscillating ring counter</td>
<td>382</td>
</tr>
<tr>
<td>Oscillator</td>
<td>215, 231</td>
</tr>
<tr>
<td>and tripler section</td>
<td>866</td>
</tr>
<tr>
<td>beat-frequency</td>
<td>763</td>
</tr>
<tr>
<td>frequency-standard</td>
<td>378</td>
</tr>
<tr>
<td>low-distortion power</td>
<td>509</td>
</tr>
<tr>
<td>Wien-bridge</td>
<td>708, 714</td>
</tr>
<tr>
<td>low-MHz</td>
<td>520</td>
</tr>
<tr>
<td>superstable variable-freq.</td>
<td>778</td>
</tr>
<tr>
<td>two-decade high-frequency</td>
<td>voltage-controlled</td>
</tr>
<tr>
<td>with double frequency output</td>
<td>517, 866</td>
</tr>
<tr>
<td>with quadrature output</td>
<td>510</td>
</tr>
<tr>
<td>Oscillator circuit</td>
<td>83</td>
</tr>
<tr>
<td>Oscillator circuits</td>
<td>727</td>
</tr>
<tr>
<td>Output, square-wave</td>
<td>721, 866</td>
</tr>
<tr>
<td>P Prazinger</td>
<td>219</td>
</tr>
<tr>
<td>Prazinger</td>
<td>128</td>
</tr>
<tr>
<td>Peak detector</td>
<td>254</td>
</tr>
<tr>
<td>Performance monitor</td>
<td>707</td>
</tr>
<tr>
<td>Phase detector</td>
<td>385</td>
</tr>
<tr>
<td>Phone shift oscillator</td>
<td>508</td>
</tr>
<tr>
<td>Phone monitor, full time</td>
<td>668</td>
</tr>
<tr>
<td>Phono amplifier</td>
<td>110, 119</td>
</tr>
<tr>
<td>Phono preamplifier</td>
<td>110</td>
</tr>
<tr>
<td>Photocell compressor/age</td>
<td>123</td>
</tr>
<tr>
<td>circuit schematic</td>
<td>134</td>
</tr>
<tr>
<td>Photodiode amplifier</td>
<td>98</td>
</tr>
<tr>
<td>Photodiode detector</td>
<td>258</td>
</tr>
<tr>
<td>Photovoltaic cell amplifier</td>
<td>89</td>
</tr>
<tr>
<td>PLL</td>
<td>391</td>
</tr>
<tr>
<td>Polarity switcher</td>
<td>397</td>
</tr>
<tr>
<td>Polarity butternworth</td>
<td>324</td>
</tr>
<tr>
<td>Positive floating regulator</td>
<td>600</td>
</tr>
<tr>
<td>Positive peak detector</td>
<td>255</td>
</tr>
<tr>
<td>Positive regulator</td>
<td>601, 609</td>
</tr>
<tr>
<td>Positive voltage regulator</td>
<td>584</td>
</tr>
<tr>
<td>Postionection marker circuit</td>
<td>715</td>
</tr>
<tr>
<td>Power amplifier</td>
<td>81, 92, 532</td>
</tr>
<tr>
<td>with control circuits</td>
<td>534</td>
</tr>
<tr>
<td>Power comparator</td>
<td>466</td>
</tr>
<tr>
<td>Power control</td>
<td>207</td>
</tr>
<tr>
<td>Power control circuit, full</td>
<td>wave</td>
</tr>
<tr>
<td>Power controller, hysteresis</td>
<td>free</td>
</tr>
<tr>
<td>Power generation circuit</td>
<td>421</td>
</tr>
<tr>
<td>Power op amp</td>
<td>485</td>
</tr>
<tr>
<td>Power supply</td>
<td>304, 594</td>
</tr>
<tr>
<td>Power timer zero stand-by</td>
<td>758</td>
</tr>
<tr>
<td>Preamplifier</td>
<td>42, 61, 69</td>
</tr>
<tr>
<td>high-impedance</td>
<td>40, 58, 631</td>
</tr>
<tr>
<td>low-frequency</td>
<td>49</td>
</tr>
<tr>
<td>low-noise 2-meter</td>
<td>59</td>
</tr>
<tr>
<td>low-noise 220 MHz</td>
<td>59</td>
</tr>
<tr>
<td>six-meter</td>
<td>54</td>
</tr>
<tr>
<td>two-meter</td>
<td>47, 49</td>
</tr>
<tr>
<td>Preamplifier and tone</td>
<td>generator, combination</td>
</tr>
<tr>
<td>Preamplifier clipper circuit</td>
<td>131</td>
</tr>
<tr>
<td>Preamplifier current booster</td>
<td>128</td>
</tr>
<tr>
<td>Preamplifier/RIAA</td>
<td>117</td>
</tr>
<tr>
<td>Precision null meter</td>
<td>671</td>
</tr>
<tr>
<td>Precision oscillator</td>
<td>867</td>
</tr>
<tr>
<td>Precision oscillator drive</td>
<td>517</td>
</tr>
<tr>
<td>Precision regulator</td>
<td>606</td>
</tr>
</tbody>
</table>

Probes:
- high-impedance 698
- Process control interface 364
- Product detector 776
- Programmable counter 402
- Programmable divider 388
- Programmable 1A power supply 561
- Programmable peak detector 192
- Projection lamp voltage regulator 567
- Proportional controller 571
- Protected high-voltage regulator 582

Pulse generator:
- 302, 401, 849, 852, 854, 858, 867
- Pulse shaper 405
- Pulse stretcher photo-driven 525
- Pulse width modulator 847

Q
- Q-multiplier 68
- ORP transmitter 765
- Quad MOS clock driver 180, 184

R
- Radio single-stage
 - solar-powered 522
 - two-stage, solar-powered 522
- Radio pager 337
- Radio receiver 34
- Ramp and hold
 - low-drift 452
- Ramp generator circuit 870
- Ramp pulse voltage
 - controlled oscillator 518
- Range 315
- Ratio detector 283
- Rear speaker ambience amplifier 112
- Receiver 67
 - high-performance 628-629
 - light-beam 523
- Receiver converter 55, 70, 73
- Receivers, dual-conversion 785
- Rectifier circuits 264
- Reflected power meter 734
- Reflex game 352-353
- Regenerative detector 720
 - complete schematic 56
- Regenerative receiver 41, 65
- Regulated DC motor control 553
- Regulator, high-stability
 - high-stability 1A 577
 - 5V 596
 - ± 5.0 Volt, 10-ampere 608
 - ± 15 Volt 607
- slow turn-on 15V 597
- 10 587
- 10A 595
 - with foldback current limiting 588
 - with plastic boost transistor 586
 - with protective diodes 589
 - with short circuit protection 604
- Relay
 - 211, 213, 223, 313
 - light-operated 529
- Relay circuit, solid-state 568
- Relay driver with strobe 448
- Remote AC
 - electronic thermostat 753
- Remote alarm circuit 17
- Remote amplifier 82
- Remote control 537, 539, 567
- Remote sensing
 - digital thermometer 752
 - Remote speed switch, two-wire 663
 - Remote temperature sensing 20
 - Remote thermocouple amplifier 83
 - Repeater control system 221
 - Resistance decade 738, 742
 - Resistance thermometer
 - transmitter 753
 - Reverses loads 393
- Resistor values 228
Resistors 265
Resynchronizer 377
Retriggerable one-shot 516
Reverse agc 309
Rf amplifier 339
Rf detector 300, 697
Rf power amplifier schematic 644
Hf preamplifier 37, 42, 46, 65
 150 MHz 87
 28-MHz 62
Rt sniffer 295
Rt wattmeter 731
 0.025 to 10W 718
Rt wattmeter metering circuit 728
RMS circuit 430
RMS closed-loop voltage compensator 538
RMS open-loop voltage compensator 543, 571
RMs regulator 540
RTTY circuit 65
RTTY converter circuit 61

S
Sample & hold circuit 646
 high-speed 647
 low-drift 649
 negative peak detecting 648
Sample log c board tip-flop 399
Sawtooth generator 301 848.
 858 859
Scanner circuit, 4-channel 30
SCR alarm light-operating 526
SCR alarm circuit, light-relay-operated 525
SCR bridge power supply, full-wave 829
SCR full-range power controller 558
Selective calling decoder 212
Sensitive rf voltmeter 696
Series chopper 175, 176
Series-shunt chopper 174, 176
Servo motor amplifier knee-operated 651
Servo motor power amplifier 655
Servo motor preamplifier 652
Shooting gallery 356
Shortwave converter tunable 348
Shunt diode noise limiter 283, 284
Shunt rectifiers 265
Shunt regulator 600
 with crowbar 580
Sideband-generating crystals 291
Signal generator 744, 860
 pocket size 892
 triple-wave output 871
Signal generator/amplifier 872
Signal injector 704
Signal injector/tracer switches 864
Silicon diodes 267
Sine function 423
Sine wave oscillator crystal-controlled 513
Single amplifier VCO 510
Sinusoidal voltage-controlled oscillator 519
Siren 443
 2-tone 66 464
 smoke alarm 661
Solid-state timer 780
Sonar application 611
Speech compressor 132
Speech processor 138 139
Speech simulator/oscillator 141
Speed control, plug-in 551
Square root of the sum of the squares circuit 435
Square rooter 434

Square rooter circuit 422, 434
Square wave oscillator 508, 515, 847
Squarewave generator 854
Square-wave source 716
Square wave, 60Hz 708
Squelch circuit 28
Squelched preamplifier 131
SSB/CW reception 279, 315
SSB - if noise limiter 281
SSB product detector 840
SSTV frequency standard 397
SSTV ramp generators 869
Stable signal generator 865
Staircase generator pulse counter 848
State Siren 451
Static switch, three-position 564
Stereo amplifier 114, 115
Stereo phonograph amplifier 101, 105
Stereo volume control 23
Subaudible tone generator 232, 234
Summing amplifier 504
Superhet receiver, single-conversion 50-51
Superregenerative receiver, one-transistor 37 56
Suppressed carrier modulator 841
Sweep frequency generator 861
Sweep generator 746, 864
 unijunction-transistor 720
Sweep oscillator circuit 732 873
Switch, transmit-receive 311
Switch & amplifier voice-activated 27
Switching power amplifier 532, 533
Switching regulator 585 588
 591, 593, 602 603
Switching transistors, high-speed 852
SWL receiver 38-39
SWR bridge 297 697
Sync generator circuit 857
Synchronous AM demodulator 202
Synchronous data entry 365
Synchronous divide-by-5 up counter 379
Synchronous divide-by-6 up counter 379
Synchronous divide-by-2 counter 378
Synchronous handsnap 364
T
Tachometer 447
Tape delay back amplifier 119
Tape preamplifier 109
Tape recorder 444
Telephone ring relay 210
Temperature control circuit 203
Temperature controller 200 202
 203, 205
Temperature sensor 21
Test generator, dual-tone 719
Sine wave oscillator 853
Thermocouple amplifier 68
Thermocouple transmitter 465
Thermometer 752
 for negative supply 750
 for positive supply 750
 with meter output 751
Three tone doorbell 346
Three transistor radio 630
Thyristor half-wave control circuit 551
Time base schematic diagram 390
Time delay generator 850
Timing signal 398
Tone decoder 208, 226
 with relay output 456

879
p.237 - Converter for rms
+15V 11 rection 235-245

p.244 - DC to DC converter +15V
555

INVERTERS p.367 - 370

p.368 - ±12V DC To 115V, 60 Hz

see Fig 11-13 100W output